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The present study is concerned with a fully analytical model for predicting impact

resistance and damage tolerance characteristics of laminated fiber reinforced composite

plates. The energy balance for damage development during the impact process is established

with the help of a localized deformation field, in which various effects such as the anisotropy

of the delaminated sublaminates, elastic property degradation due to matrix cracking,

multiple delaminations and membrane deformation within the damage zone are taken into

account. This results in upper and lower bounds of the delamination threshold load and

a deflection-dependent critical load for stable delamination propagation. On the basis of

the conservation of energy principle, simple relationships are found between the resulting

damage area and the impact energy as well as the peak impact load. The global buckling

load of damaged rectangular plates is derived from the energy-based stability criterion, and

the residual ultimate strength is calculated using the von Kármán postbuckling strength

theory. The analytical solutions obtained turn out to be capable of providing highly

accurate predictions compared with the standard impact and the compression-after-impact

experiments of carbon-fiber-reinforced polyetherimide and aromatic polymer composites.
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Nomenclature

A = crack area, mm2, or extensional stiffness matrix, N/mm

B = bending-extension coupling matrix, N

C = compliance of structure, mm/N

c = contact radius, mm

D = bending stiffness matrix, N·mm

D∗ = reduced bending stiffness matrix, N·mm

D = scalar average flexural rigidity, N·mm

E = elastic modulus, GPa, or energy, J

GC = critical energy release rate, J/m2

M = moment per unit length, N

N = midplane force per unit length, N/mm, or number of interfaces

n = number of delaminations

P = load, N

Q = reduced stiffness matrix, GPa

S = damage area, mm2, or shear strength, MPa

u = bending energy infinitesimal element, J/mm2

U = bending energy plate, J

w = displacement field, mm

X = longitudinal strength, MPa

Y = transverse strength, MPa

Γ = impact energy transfer factor

ζ = normalized critical buckling load

Λ = dimensionless function for minimization

λ = ellipticity ratio

ξ = bending stiffness reduction, N·mm

σ = stress, MPa

Ω = constant in buckling analysis
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I. Introduction

Because of their exceptional strength and stiffness-to-density ratios and their superior physical properties,

composite materials are highly suitable for lightweight structural applications in the aviation and aerospace

industry. Initially composite materials were used only in secondary structures. As knowledge and technology

in composite materials have improved, their use in primary structures, such as wings and fuselages, has

increased tremendously. However, composite structures are susceptible to foreign object impacts, which

can result in barely visible impact damage (BVID) involving matrix cracks and multiple interlaminar

delaminations. As BVID is in general difficult to detect with maintenance inspection procedures and can

lead to a significant reduction of the compression strength, structural design engineers have to deal with

impact resistance and damage tolerance issues to make sure that the structures offer sufficient resistance to

impact damage and are able to function safely even with BVID present. Therefore, there clearly exists the

need for an accurate prediction method for the impact resistance and damage tolerance characteristics of

composite structures to realize the maximum potential benefits of weight saving from composite materials.

The topics of impact resistance and damage tolerance of composite materials have been very extensively

investigated in the past two decades. However, most studies were restricted to an empirical or numerical

approach in which, for example, the finite element method was deployed (see the reviews of Abrate1, Bartus

and Vaidya2, Cantwell and Morton3, Elder et al.4, and Richardson and Wisheart5). The analytical approach,

which may help elucidate the underlying principles behind various phenomena, received little attention

in the literature. One of the analytical solutions was the threshold load for initiation of delamination

growth, proposed by Davies and Robinson6. By considering a centrally loaded circular quasi-isotropic plate

with a circular midthickness delamination, they found that the energy release rate is independent of the

delamination radius and that there exists a delamination threshold load above which the delamination starts

to grow without further load increase until another failure mode takes over. This quasi-static solution of the

delamination threshold load was extended to a dynamic solution by Olsson et al.7, in which inertial effects

in the delaminated sublaminates were taken into account. At the same moment, the single delamination was

extended to multiple delaminations, which were modeled using isotropic layers of equal thickness. For the

rest, the analytical buckling solution for anisotropic rectangular plates was given by Whitney (see Jones8).

An analytical model, which is in a position to predict the complete process of damage development due to

low velocity impact and strength reduction associated with BVID, is not available.

The objective of this study is to develop an analytical model for impact resistance and damage tolerance

predictions for laminated composite plates using an energetic approach. The damage development modeling

is founded on the energy balance principle that crack extension occurs when the energy available for crack

growth is sufficient to overcome the resistance of the material. This leads to the upper and lower bounds of the
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delamination threshold load as well as a stable delamination propagation load. Subsequently, the resulting

damage area is derived in accordance with the principle of conservation of energy. Finally, the global-

buckling-related structural performance degradation is modeled using the energy-based stability criterion,

which states that the flat form of equilibrium becomes unstable when the work performed by the midplane

forces becomes equal to the bending energy of the plate.

II. Improved Delamination Threshold Load

This section presents a new delamination threshold load, which takes into account the anisotropic effects

of the delaminated sublaminates and the material degradation due to matrix cracking. The model gives

a clear mathematical relationship between the delamination threshold load and the key design variable of

composite structures, the laminate layup. The model is based on a single delamination, which leads to the

maximum potential energy release as two delaminations can not be initiated exactly at the same time from

a statistical viewpoint.

A. Basic Assumptions

To facilitate the analysis, the following simplifications and assumptions are made:

1. When the impact duration is much longer than the time it takes for generated stress waves to travel

to the outer boundary of the plate and return, the effects of higher vibrational modes are small and

can be neglected. The load deflection behavior of the plate during impact is approximately equivalent

to that under a static loading. This type of response, which typically occurs by low velocity impact, is

considered to be quasi static in nature (see Rayleigh9).

2. The composite laminate behaves like a linear elastic material, so that linear elastic fracture mechanics

(LEFM) is applicable to delamination development problems. Consistently with the aforementioned

quasi-static approach, the delamination development is supposed to be quasi static, that is, successive

stages of static equilibrium are assumed for the energy balance. The delamination growth is dominated

by the shearing crack extension mode, that is, it is mainly a matter of mode II crack propagation.

3. The bending deformation in the laminated composite plate is dominant compared with the membrane

deformation up to the delamination threshold load. The size of the damage zone is small compared

with the size of the plate. The delamination is supposed to only cause a localized disturbance in the

deformation field within the impact damage zone. The global deformation of the plate outside the

damage zone remains unaffected after the occurrence of the delamination.
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4. The damage mechanism transverse matrix cracking occurs to a limited extent, so that the crack area

is negligible compared with the delamination area. The damage mechanism fiber breakage is left out

of consideration in the current analysis.

5. For simplicity, the analysis is limited to quasi-isotropic laminates in this paper. The delamination

that separates the original laminate into two parts can occur along an arbitrary interface within the

laminate. Therefore, the delaminated sublaminates may have a general unbalanced unsymmetrical

layup. The delamination has an idealized elliptic shape.

B. Bending Energy in Localized Deformation Field

Consider a partially damaged flat plate subjected to the concentrated point load P representing the transverse

impact load. The deformation outside the damage zone is modeled with the global deformation field on the

basis of the undamaged plate under the load P . The local deformation field inside the damage zone is

simulated with two elliptic orthotropic laminates on top of each other under the same P . The major axis of

the ellipse is a0 and the minor axis is b0. The undamaged area is denoted as A1 and the delaminated area

is A2 (see Figure 1).

P P P

= +

a0 b0
A2

A1

Figure 1. Global and local deformation field

The classical lamination theory (CLT) is used to describe the constitutive behavior of laminated composites:

 N

M

 =

 A B

B D


 ϵ

κ

 (1)

The extensional stiffness matrix A relates the in-plane resultant forces N to the midplane strains ϵ of the

laminate, whereas the bending stiffness matrix D relates the resultant moments M to the curvatures κ. The

bending-extension matrix B describes the coupling between N and κ as well as the coupling between M and

ϵ. A partially inverted form of equation (1) is

 ϵ

M

 =

 A−1 −A−1B

BA−1 D −BA−1B


 N

κ

 (2)
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For a pure bending problem with the in-plane forces N equal to zero, the reduced bending stiffness matrix

D∗ is defined as

D∗ = D −BA−1B (3)

For an infinitesimal element within the undamaged region, the elastic strain energy due to bending per

unit area is calculated by the following formula:

u(w1) =
1

2

[
D∗

11

(
∂2w1

∂x2

)2

+ 2D∗
12

∂2w1

∂x2
∂2w1

∂y2
+D∗

22

(
∂2w1

∂y2

)2

+ 4D∗
66

(
∂2w1

∂x∂y

)2
]

(4)

where w1 is the global displacement field in the plate. Similarly, the bending energy per unit area in an

infinitesimal element within the delaminated region becomes

ũ(w2) =
1

2

[
D̃∗

11

(
∂2w2

∂x2

)2

+ 2D̃∗
12

∂2w2

∂x2
∂2w2

∂y2
+ D̃∗

22

(
∂2w2

∂y2

)2

+ 4D̃∗
66

(
∂2w2

∂x∂y

)2
]

(5)

where w2 is the local displacement field in the damage zone due to the weakening of the material. The

residual bending stiffness constants D̃∗
ij can be obtained by summing the corresponding D∗

ij components of

the delaminated sublaminates. The total bending energy in the plate can be found by integration as follows:

U =

∫∫
A1

u(w1)dxdy +

∫∫
A2

ũ(w2)dxdy =

∫∫
A1+A2

u(w1)dxdy︸ ︷︷ ︸
constant

−
∫∫

A2

u(w1)dxdy +

∫∫
A2

ũ(w2)dxdy (6)

Equation (6) shows that the bending energy release is, in principle, dependent on both the global field w1

and the local field w2. To obtain an upper bound approximation, the term −
∫∫

A2
u(w1)dxdy+

∫∫
A2
ũ(w2)dxdy

is calculated by supposing that the plate is entirely clamped outside the elliptic boundary of the damage zone.

For the local displacement field w2, the exact solution w = w0

(
1− r2

a2
0
+ 2 r2

a2
0
ln r

a0

)
for a clamped isotropic

circular plate of radius a0 loaded at the center in Timoshenko and Woinowsky-Krieger10 is generalized to

the following form in the present study:

w2 = w0

[
1−

(
x2

a20
+
y2

b20

)
+

(
x2

a20
+
y2

b20

)
ln

(
x2

a20
+
y2

b20

)]
(7)

The expression for w2 vanishes at the boundary, as does its first derivative; in other words, the boundary

conditions imposed by the clamped edge are satisfied. Logically, the maximum displacement w0 occurs at

the loading point, where lim
r→0

r2 ln r = 0 is valid. The bending energy stored in the original laminate within

the area A2 is approximated as follows:

∫∫
A2

u(w1)dxdy ≈
∫∫

A2

u(w ′
2 )dxdy (8)
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where the artificial displacement field w ′
2 corresponds to a clamped undamaged elliptic laminate subjected

to a normal load at the center:

w ′
2 = w ′

0

[
1−

(
x2

a20
+
y2

b20

)
+

(
x2

a20
+
y2

b20

)
ln

(
x2

a20
+
y2

b20

)]
(9)

By means of the following coordinate transformation:

 x = a0ϱ cosϑ

y = b0ϱ sinϑ

with

∣∣∣∣∂(x, y)∂(ρ, ϑ)

∣∣∣∣ = a0b0ϱ (10)

the total bending energy stored in the plate is found to be

U = const− 8πw ′2
0

a0b0
D0 +

8πw2
0

a0b0
(D1 +D2) (11)

The weighted average flexural rigidities D0, D1, and D2 for the original laminate and the first and second

delaminated sublaminates are calculated with

D =
1

8

[
3D∗

11λ
2 + 2(D∗

12 + 2D∗
66) + 3D∗

22λ
−2
]

(12)

where λ is the ellipticity ratio of the delamination

λ =
b0
a0

(13)

The bending stiffness is minimized with respect to the shape of the delamination, so that the potential energy

of the system reaches the minimum. This leads to an ellipticity ratio-independent flexural rigidity:

∂D

∂λ
= 0 ⇒ λ = 4

√
D∗

22

D∗
11

⇒ D =
1

4

(
3
√
D∗

11D
∗
22 +D∗

12 + 2D∗
66

)
(14)

Equation (11) can be further simplified by eliminating w′
0 and w0 using the local compliances of the

undelaminated and delaminated laminate at the load application point. In doing so, w′
0 and w0 can be

replaced by P . The demanded compliances can be calculated from equation (11) with the help of the

principle of virtual displacement. The local compliance C of the original laminate and the local compliance
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C̃ of two delaminated sublaminates are, respectively,

C =
w ′

0

P
=

a0b0

16πD0

=
A2

16π2

1

D0

C̃ =
w0

P
=

a0b0

16π(D1 +D2)
=

A2

16π2

1

D1 +D2

(15)

Using the compliances obtained, equation (11) can be rewritten in the following equivalent form:

U = const− 1

2
P 2C +

1

2
P 2C̃ (16)

C. Energy Balance Analysis Based on Bending

The delamination threshold load can be derived by means of LEFM and, in particular, the Griffith energy

criterion8. If a crack is in equilibrium, the decrease of strain energy must be equal to the increase of surface

energy due to crack extension, that is,

GIIC =
dU

dA
(17)

where GIIC is the mode II critical energy release rate, which can be measured using the end-loaded split

test or the mixed-mode bending test; U is the elastic strain energy in the structure; and A is the crack area.

Substituting equation (16) into equation (17) gives

GIIC =
1

2
P 2
cr

(
∂C̃

∂A
− ∂C

∂A

)
=

P 2
cr

32π2

(
1

D1 +D2

− 1

D0

)
(18)

where Pcr is the delamination threshold load below which a significant delamination will not occur.

To obtain the minimum delamination threshold load that is associated with the maximum potential

energy release from the structure, the following minimization problem is formulated:

minimize ξ =

(
1

D1 +D2

− 1

D0

)−1

subject to i = 1, · · · , N for 0 ≤ θ ≤ π

(19)

where ξ is the bending stiffness reduction function due to delamination development. The constant N is

the number of interfaces and the variable i indicates the location of the delamination, which determines

the layup and thickness of two sublaminates. The minimization problem can be effectively solved using the

so-called bracketing method, that is, using a series of function evaluations starting from an initial point. For

the discrete variable i, the step size is 1. The angle θ is the orientation of the delamination with respect to

the material coordinate system, in which the layup of the laminate is defined. Keeping the ellipse fixed in

the x-y coordinate system, the laminate and its sublaminates are rotated with θ during the calculation to
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achieve the same results. For the continuous variable θ, a sufficiently small step size should be chosen. If the

sublaminates possess strong orthotropy, θ is aligned with the fiber direction of the dominant sublaminate.

Having solved the minimization problem, all relevant information about the potential delamination is

known. The delamination threshold load then becomes

Pcr =
√
32π2GIICξmin (20)

Using equation (20), the delamination threshold load is predicted on the basis of the laminate layup, and the

elastic and fracture properties of the lamina. Assuming a midthickness delamination and replacing the two

sublaminates with two isotropic layers, equation (20) reduces to the equation of Davies and Robinson6 with

ξmin = D′/3, where D′ is the isotropic flexural rigidity of the plate. The rigidity D′ of an isotropic plate is

proportional to the third power of its thickness. This implies that halving the thickness leads to a reduction

of the rigidity with a factor 8. The residual flexural rigidity of the two delaminated sublaminates is D′/4;

therefore, ξmin becomes D′/3. It is apparent that the main factor that greatly complicates the problem is

the material anisotropy.

As already mentioned, the bending energy release based on elliptic plates with clamped edges leads to an

upper bound approximation. Following the same solution procedure, the lower bound of the delamination

threshold load can be found by considering elliptic plates with simply supported edges. According to

Timoshenko andWoinowsky-Krieger10, the maximum deflection for a clamped and simply supported isotropic

circular plate under a point load P can be expressed as follows:

w0 =
Pa20
16πD

for a clamped edge

w0 =
(3 + ν)Pa20
16π(1 + ν)D

for a simply supported edge
(21)

where a0 is the plate radius and ν is Poisson’s ratio of the material. For laminates, the ν value can be

estimated using the A matrix from the CLT: ν = A12/A22. The scaling factor α between the compliances of

a clamped and a simply supported plate is

α =
1 + ν

3 + ν
(22)

Hence, the lower bound of the delamination threshold load can be written as

Pcr =
√
32π2αGIICξmin (23)

Laminates used in practice usually have an effective ν of about 0.3; the lower bound is then 37% lower

compared with the upper bound.
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D. Material Degradation Due to Matrix Cracking

As is known, matrix cracks have already occurred before the onset of significant delamination. The fact that

the matrix cracks reduce the transverse modulus of different layers as well as the delamination threshold

load can be taken into account by using the progressive damage model proposed by Chang and Lessard11.

The formation of matrix cracks takes place for the greater part outside the small contact zone, where the

highly localized contact stress field has smoothed out. On the basis of Saint-Venant’s principle, the matrix

cracking mechanism is expected to be dominated by the bending stress field produced by the impact load.

For convenience, the residual stresses in the matrix due to the manufacturing processes are neglected.

Because of the r2 ln r-type singularity, a concentrated point load leads to infinitely large bending moments

immediately under the loading point. Hence, the maximum bending moments are calculated on the basis of

a simply supported isotropic plate of radius a, for which the load is uniformly distributed over a concentric

circular area of radius c (a≫ c). The origin of the Cartesian coordinate system x-y coincides with the center

of the plate. As demonstrated by Timoshenko and Woinowsky-Krieger10, the maximum bending moments

that occur at the plate center read

Mx =My =
Pcr

4π

[
(1 + ν) ln

a

c
+ 1
]

(24)

The twist moment Mxy is equal to 0 at the center, as the plate is symmetrically loaded with respect to the

center. In equation (24), Pcr is the upper bound of the delamination threshold load. The plate radius a

corresponds to the shortest distance measured from the impact point to the supporting edges of the global

structure. The radius c is taken as equal to the contact radius, which is given by the following expression

from Hertz’s contact theory12-13:

c =
√
riα (25)

where ri is the impactor tup radius and the contact indentation α can be solved through Hertz’s law14:

Pcr = nα
3
2 with n ≈ 4

3
r

1
2
i E2 (26)

where E2 is the elastic modulus transverse to the fiber direction.

With the prescribed maximum moments M = {Mx,My, 0}T , the maximum middle surface curvatures

due to bending κ = {κx, κy, κxy}T then become:

κ = D−1M (27)

where D is the bending stiffness matrix of the original laminate. For an arbitrary kth layer, the stresses in

10 of 33

American Institute of Aeronautics and Astronautics



the principal material directions σk = {σ1, σ2, τ12}Tk are

σk = zTQkκ (28)

where z is the distance from the middle surface of the laminate, T is the transformation matrix between the

x-y coordinates and the principal material coordinates, and Qk is the transformed reduced stiffness matrix

of the kth layer. In equation (28), T and Qk are calculated in accordance with the CLT8.

By reason of the symmetric layup, the geometrical middle surface of a quasi-isotropic laminate acts as

the neutral surface of bending. The layers below the neutral surface are expected to fail by matrix tensile

cracking when the maximum stresses in the layers satisfy the following failure criterion11:

(
σ2
Yt

)2

+

(
τ12
S12

)2

= 1 (29)

where Yt is the transverse tensile strength and S12 is the shear strength of the lamina. For matrix compression

failure in the layers above the neutral surface, the following failure criterion11 applies

(
σ2
Yc

)2

+

(
τ12
S12

)2

= 1 (30)

where Yc is the transverse compression strength of the lamina. On the basis of the stresses obtained from

equation (28), it can be predicted whether the matrix cracks have occurred in a certain layer. If so, the

transverse Young’s modulus E2 is reduced to 0 in that layer:

E2 = 0 (31)

whereas the longitudinal Young’s modulus E1, the in-plane shear modulus G12, and Poisson’s ratios ν12 and

ν21 remain constant throughout the damage development process. Then the bending stiffness constants D0,

D1 and D2 can be calculated once again by means of the CLT, ending in decreased upper and lower bounds

for the delamination threshold load.

To summarize, a damage mechanics idea is incorporated into the fracture-mechanics-based delamination

initiation model to include the effects of matrix cracking. In contrast to the preceding paragraphs, the

delamination threshold load here becomes dependent on the global structural size, the boundary conditions,

the impactor target contact, the strength properties of the laminae, etc. For this reason, it can not be taken

for granted that the impact test results obtained with extracted small laboratory specimens always apply

to a full-scale structure. This illustrates the importance of developing an analytical model to predict the

behavior of a composite structure on the basis of fundamental material properties.
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III. Modeling Delamination Growth

This section takes a step forward to derive an analytical solution for the growth of significant delaminations.

Again, the modeling is based on the LEFM approach, whereas some new assumptions have to be made to

achieve realistic results, especially the effects that are connected with multiple delaminations.

A. Geometry of Idealized Multiple Delaminations

It has been empirically observed that impact-induced damage consists frequently of matrix cracks and multi-

ple delaminations. Accordingly, the modeling of delamination growth may not rely on a single delamination.

As displayed in Figure 2, the current study assumes idealized multiple delaminations, of which the individual

delaminations are elliptic. The area of the ith delamination is Ai and the total number of the delaminations

is n. The external contour of the damage zone is circular, and its area is S. In the analysis, this contour is

actually the boundary of the localized deformation field.

Ai

S

Ap

S′

Figure 2. Idealized multiple delaminations

Assuming that the major axes of the ellipses are equal to the radius of the circle, the total actual crack

area and the damage area are related to each other by the following equation:

n∑
i=1

Ai = S
n∑

i=1

λi (32)

For later validation work, it is convenient to introduce the projected area of the delaminations, which

is detectable using an ultrasonic C scan. The projected area of the delaminations Ap is calculated by

subtracting the overlapping area from the total crack area:

Ap ≈ S

[
n∑

i=1

λi − (n− 1)

(∑n
i=1 λi
n

)2
]

(33)

where the overlapping area is estimated using the average radius of the interior tangent circles of the ellipses.

For a large number of delaminations or ellipticity ratios close to 1, the following equation is a reasonable

approximation:

Ap ≈ S (34)
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The last area definition that needs to be introduced is S′:

S′ ≈ 1

4

(∑n
i=1 λi
n

+ 1

)2

S (35)

The area S′ is based on a circle with its radius equal to the average of all major and minor axes of the ellipses.

This effective area will be used to describe the size of the damage zone in the global buckling analysis, in

which the damage zone is simplified to n circular delaminations. The reason for this simplification is that

the global deformation field is dominant when the plate is loaded under a uniform in-plane compression.

B. Stability of Delamination Propagation

Using equation (32), equation (20) for the delamination threshold load can be generalized in the following

form suitable for the multiple delaminations:

Pn =

√
32π2GIIC

∑n
i=1 λi

(
∑n+1

i=1 Di)−1 −D
−1

0

(36)

where the ellipticity ratio λi for the ith delamination can be approximated on the basis of the anisotropic

properties of two adjacent sublaminates:

λi =
4

√
D∗

22, i +D∗
22, i+1

D∗
11, i +D∗

11, i+1

(37)

For the special case n = 1, λ1 = 1 holds. Pn for n = 1, 2, 3, · · · can be interpreted as the critical load at

which n delaminations along the given interfaces will start to grow. If the material anisotropy is neglected,

equation (36) reduces to the equation of Olsson et al.7 for the threshold load of n delaminations. That

means that the term
∑n

i=1 λi increases with the order O(n). The n delaminations separate the laminate

into n+1 sublaminates of equal thickness, and the flexural rigidity of each sublaminate is reduced to 1
(n+1)3

compared with the original laminate. This implies that the total residual flexural rigidity min(
∑n+1

i=1 Di) is

of the order O
[

1
(n+1)2

]
. After some simplifications, Pn is found to decrease with an increasing n with the

order O
[

1√
n+2

]
.

Hypothetically speaking, if there is a single delamination throughout the entire process, the delamination

starts to grow without further load increase when the delamination threshold load is exceeded. In the case of

multiple delaminations, the load defection curve will decrease in a stepwise pattern, resulting in an unstable

crack propagation, as the energy released is larger than the energy required for growth. However, the reality

is that the maximum impact load is in most cases higher than the delamination threshold load. This implies

that a mechanism should exist that leads to a stable crack growth. For clarity, a load deflection curve is
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shown in Figure 3, in which the impact load P is plotted against the deflection δ under the loading point.

The topic of the identification of the underlying mechanism will be dealt with in Section III.C.

P

δ

Pcr

δcr0

Stable propagation

Single delamination

Multiple delaminations

Figure 3. Stable and unstable delamination growth

C. Energy Balance Based on Membrane Deformation

Unlike the delamination initiation model, a proper modeling of the delamination propagation means that

the membrane strain energy within the damage zone due solely to the stretching of the middle surface has

to be taken into account. It can be expected that the membrane effects become significant in that region

when the bending stiffness has been dramatically reduced and the membrane stiffness remains unchanged,

as the load-carrying fibers preserve their properties and orientations. This implies that equation (18) for the

energy release needs to be updated by adding an extra membrane term.

The linearized stiffness of the membrane can be derived from the large deflection solution for an isotropic

circular plate under a point load P (see Timoshenko and Woinowsky-Krieger10):

w0

h
+ c1

(w0

h

)3
= c2

Pa20

Ẽh4
(38)

where w0 is the maximum deflection of the circular plate, h is the plate thickness, and a0 is the plate radius.

The constants c1 and c2 are dependent on the boundary conditions. If the plate is clamped at the edge, c1 is

equal to 0.200 and c2 is equal to 0.217. If the plate is simply supported, c1 is equal to 0.272 and c2 is equal

to 0.552. The effective engineering elastic modulus Ẽ of the delaminated sublaminates is taken as equal to

the effective modulus of the original laminate:

Ẽ =
1

h

(
A11 −

A2
12

A22

)
(39)

where Aij are components of the A matrix. Differentiating equation (38) with regard to w0, equation (15)
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describing the total residual stiffness of the delaminated sublaminates with clamped edges can be rewritten

as:

1

C̃
=

16π2

S

(
n+1∑
i=1

Di +
1

18
Ẽhw2

0

)
(40)

The global deformation of the plate is still assumed to have a character of pure bending; therefore,

equation (15) for the original stiffness of the undamaged plate remains valid. On the basis of equation

(40), the linearized energy balance including the membrane deformation within the damage zone can now

be expressed as follows:

Pp =

√√√√ 32π2GIIC

∑n
i=1 λi(∑n+1

i=1 Di +
1
18 Ẽhw

2
0

)−1

−D
−1

0

(41)

The term GIIC

∑n
i=1 λi can be considered a resultant critical energy release rate for multiple delaminations:

GC = GIIC

n∑
i=1

λi (42)

When the laminate bending stiffness is significantly reduced by multiple delaminations, it is apparent that

the damage zone starts to behave more like a flexible membrane, that is, (
∑n+1

i=1 Di +
1
18 Ẽhw

2
0)

−1 ≫ D
−1

0

and
∑n+1

i=1 Di ≪ 1
18 Ẽhw

2
0. After neglecting the two aforementioned terms, equation (41) can be reduced to

the following linear equation:

Pp =
4πw0

3

√
ẼhGC (43)

Analogously to the lower bound of the delamination threshold load, a similar equation for the delamination

propagation can be derived for a simply supported edge:

Pp =
4πw0√

17

√
ẼhGC (44)

where C̃−1 = 16π2

S

(
1+ν
3+ν

∑n+1
i=1 Di +

1
34 Ẽhw

2
0

)
.

Then the delamination propagation curve starting from the delamination threshold load can be expressed

as follows:

P − Pcr =
δ − δcr
Cp

with Cp = Cu +

(
β

√
ẼhGC

)−1

(45)

The compliance Cp of the delamination propagation curve is the sum of the undamaged structural compliance

Cu and the apparent compliance of the enlarging membrane. The constant β is equal to

β =
4π

3
for the clamped edge

β =
4π√
17

for the simply supported edge
(46)
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This means that the lower bound for the delamination propagation is about 27% lower compared with the

upper bound. Using the present analysis, the load applied is found to be by approximation proportional to

the maximum deflection of the membrane when the energy balance for delamination propagation is satisfied.

The load defection curve from the impact test may manifest an almost linear increase after the delamination

threshold load. This increase arises from the membrane deformation, which lowers the energy release within

the damage zone.

D. Determination Resultant Critical Energy Release Rate

Similarly to the preceding single delamination case, Pp has to be minimized with respect to the distribution

of multiple delaminations so that the resultant critical energy release rate GC can be determined:

minimize Λ =
1

D0

(
n+1∑
i=1

Di +
1

18
Ẽhw2

0

)(
n∑

i=1

λi

)
subject to n = 1, · · · , N for 0 ≤ θ ≤ π

(47)

This minimization problem is formulated on the basis of equation (41). The integer variable n is the number of

delaminations and N is the number of interfaces. The angle θ is the orientation of the multiple delaminations

in reference to the material coordinate system. For the sake of simplicity, the individual delaminations are

assumed to have a fixed orientation with respect to each other, that is, the mutual orientation is determined

by the laminate layup. The deflection w0 can be roughly estimated using equation (38), in which the flexural

rigidity is modified to
∑n+1

i=1 Di. The load P is taken as equal to the delamination threshold load Pcr, and

the radius of the delaminated plate is chosen to reflect a realistic range of the damage size. The stiffness

constant D0 is used as a weighting factor to make the parameter Λ dimensionless and, therefore, does not

influence the final results.

The minimization of Λ can be performed using the same procedure as in the case of the threshold load

calculation. Physically, the minimization process means the determination of the condition how the energy

balance can be most easily satisfied. Keeping the deflection w0 constant, it can be verified that the term∑n+1
i=1 Di

∑n
i=1 λi in the target function Λ decreases frequently with an increasing number of delaminations,

and the term 1
18 Ẽhw

2
0

∑n
i=1 λi is commonly monotonically increasing. On the one hand, the system strives

for the maximum bending energy release and has a tendency to create as many delaminations as possible.

On the other hand, the total crack area increases with increasing amount of delaminations, resulting in a

higher resultant critical energy release rate and, therefore, a larger crack resistance. The interaction between

these two effects leads to a U-shaped Λ curve, which first decreases and then increases. The minimum Λ

represents the most energetically favorable combination of the bending energy release and the crack area.

Through the minimization, the final amount of the delaminations and their location and shape are solved,
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from which the resultant critical energy release rate GC and other relevant parameters follow. The major

advantage of the current energy-based approach is that the complex impact process, in which more cracks

are successively initiated and subsequently interact with each other, does not need to be followed step by

step. This simplifies the problem to a great extent.

To get an impression of the computational effort, the total number of possible locations of delaminations

for N interfaces can be determined by summing the binomial coefficients:
∑N

n=1

(
N
n

)
= 2N − 1. For a large

number of interfaces, a more efficient minimization algorithm is desirable; however, this topic is beyond the

scope of the current study.

IV. Area of Impact-Induced Damage

Usually, the impact energy is used to describe the intensity of an impact event, whereas the resulting

damage area is used to indicate the damage resistance. The analytical solutions obtained for the delamination

initiation and propagation are actually based on an instantaneous energy balance, in which the crack area

has been eliminated for simplification. When considering the energy balance for the entire process, the

relationship between the damage area and the impact energy or the peak impact load can be derived.

A. Simplified Load Deflection Curve

Based on the already presented analytical solutions, a simplified load deflection curve is constructed in Figure

4. The first straight line of the bilinear loading curve represents a linear elastic bending deformation of the

undamaged plate, whereas the second straight line represents the linearized delamination propagation curve

based on the localized deformation field in the damage zone. The knee point is the delamination initiation

point, which corresponds with the delamination threshold load. For the sake of convenience, the unloading

curve is supposed to be linear and parallel to the loading curve before the knee point. This simplification

comes down to the neglect of the elastic deformation energy stored in the damaged part compared with the

undamaged part of the plate. The rebound deformation of the damage zone is then, in a manner of speaking,

frozen during the unloading, so that the rebound stiffness can be approximated by the deformation of the

undamaged plate. For the same reason, the unloading curve does not return to the origin of the graph.

B. Relationship Damage Area and Peak Impact Load

Assuming that the plate deflection δ is equal to the impactor displacement, the gravitational force is

negligible, and the impactor velocity is 0 at the maximum deflection, the work done by the contact force

along the loading curve is equal to the impact energy, which is basically the initial kinetic energy of the

impactor. The work done by the contact force along the unloading curve is equal to the impactor kinetic
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P

Pmax

Pcr

0

θ1 θ1

θ2

δcr δmaxδend δ

Figure 4. Simplified load deflection curve

energy at the end of the impact event. Briefly, the impact energy E is the area under the loading curve,

whereas the impactor energy loss ∆E is the area enclosed by the complete load deflection curve:

E =

∫ δmax

0

Pdδ, ∆E =

∫ δend

0

Pdδ (48)

In accordance with the simplified load deflection curve as shown in Figure 4, the integrals in equations

(48) can be replaced by the following equations:

E =
1

2
Pcrδcr +

1

2
(Pmax + Pcr)(δmax − δcr)

∆E = E − 1

2
Pcrδcr

(
Pmax

Pcr

)2 (49)

The compliance of the undamaged plate Cu and the compliance of the delamination propagation curve Cp

are

Cu =
δcr
Pcr

, Cp =
δmax − δcr
Pmax − Pcr

(50)

Logically, the delamination threshold energy Ecr is defined by

Ecr =
1

2
Pcrδcr (51)

Using equations (49) and (50) the impactor energy loss is expressed as a parabolic function of the peak

impact load:

∆E =
1

2
(Cp − Cu)(P

2
max − P 2

cr) (52)

According to the law of conservation of energy, the loss of the impactor kinetic energy is equal to the energy

absorbed due to damage development, if the small amount of heat energy due to plastic deformation, sound
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energy, etc. is neglected. Because the greatest part of the dissipated fracture energy is consumed for the

formation of multiple delaminations, the following relationship between the impactor energy loss and the

damage area is valid:

∆E = GCS (53)

Substituting equation (53) into equation (52), the damage area becomes

S =
P 2
max − P 2

cr

2β
√
ẼhG3

C

(54)

C. Relationship Damage Area and Impact Energy

With the help of equations (50), directly eliminating the variables Pmax and δmax from equations (49) yields

∆E = H(E − Ecr) (E − Ecr)

(
1− Cu

Cp

)
(55)

where H(E−Ecr) is the Heaviside step function indicating that ∆E is equal to 0 for E ≤ Ecr. On the basis

of the last term appearing in equation (55), a parameter can be introduced as the impact energy transfer

factor:

Γ = 1− Cu

Cp
(56)

The minimum energy transfer factor Γ = 0 corresponds to an complete restitution of the elastic energy

when no damage development takes place. The maximum energy transfer Γ = 1 corresponds to an unstable

delamination growth, resulting in the highest possible energy dissipation. Using equation (56), equation (55)

can be rewritten as:

S =
Γ

GC

H(E − Ecr)(E − Ecr) (57)

Equation (57) shows that the damage area is linearly related to the impact energy. It is clear that the impact

damage resistance can be improved not only by increasing the fracture toughness GIIC of the material, but

also by optimizing the layup of the laminate and the stiffness of the structure, which plays an important role

in the energy transfer from the impactor to the target.

Up to this point, the equations for the impact behavior of composite structures have been derived.

Compared with the aforementioned reviews1-5, it is clear that all important experimental parameters affecting

the impact resistance characteristics have been incorporated into the analytical model in a logical way, for

example, lamina stiffness and strength, fracture toughness, laminate thickness, stacking sequence, etc. The

model can be used in impact resistance analyses either in a deterministic or probabilistic manner. If the

extrinsic variables such as the impactor kinetic energy, the impactor radius, and stiffness are considered
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probabilistic in nature because of the uncertainty of the in-service environment, the current model can be

readily used in Monte Carlo simulations, as the computational effort required by a large number of random

trials is still limited.

V. Damage Tolerance Analysis

When the damaged plate is loaded under compression, the impact-induced delaminations may significantly

reduce the global bending stiffness of the plate, resulting in a decrease in the critical global buckling load

and the accompanying postbuckling strength. Recall the plate containing a circular damage zone: the out-

of-plane impact loading is replaced by uniform in-plane compression in two perpendicular directions (see

Figure 5). In the current study, the residual compression strength analysis of the plate is limited to the

global buckling mode. The local failure mode termed delamination buckling, in which delaminated sub-

laminates buckle locally at first, followed by a stable or an unstable delamination growth until the plate

finally fails, is left out of consideration. Using sophisticated finite element techniques, Remmers and de

Borst15 demonstrated that the membrane energy release due to a locally buckled sublaminate is limited

and the delamination propagation begins at a very high stress level far beyond what can be expected in

engineering practice.

x

S2 = S′

S1

a

b

y

Figure 5. Simply supported rectangular plate under compression

In the buckling analysis, the plate is assumed to buckle slightly under the action of the midplane forces,

and the critical buckling loads are obtained by calculating the magnitudes that the forces must have to keep

the plate in the slightly buckled shape. From the energetic point of view, it is equivalent to compare the

strain energy of bending with the corresponding work done by the midplane forces. If the work done by

these forces is larger than the bending energy for every possible shape of lateral deflection, the equilibrium

state becomes unstable and buckling occurs (see Timoshenko and Gere16).
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The variation in the lateral displacement δw is described with a double-sine function from Navier’s

solution for simply supported rectangular plates:

δw = amn sin
mπx

a
sin

nπy

b
(58)

In the membrane prebuckling state, w is still equal to 0 and δw is the infinitely small buckle displacement.

The integers m and n are the number of buckle half-wavelengths in the x and y directions, respectively. The

work of the forces Nx, Ny, and Nxy acting in the midplane of the plate reads

∆T =
1

2

∫∫
S1+S2

[
Nx

(
∂w

∂x

)2

+Ny

(
∂w

∂y

)2

+ 2Nxy
∂w

∂x

∂w

∂y

]
dxdy (59)

When the plate is compressed in two directions, Nxy vanishes. Without losing generality, Ny is supposed to

be equal to ψNx, where ψ is an arbitrary constant. Then ∆T becomes

∆T =
π2abNxa

2
mn

8

(
m2

a2
+ ψ

n2

b2

)
(60)

Analogous to equation (6), the strain energy of bending is computed using an area integral encompassing

the entire domain of the plate:

∆U =

∫∫
S1

u(δw)dxdy +

∫∫
S2

ũ(δw)dxdy (61)

The critical buckling load follows from

∆T = ∆U (62)

The critical buckling stress σcr for the undamaged plate presented by Whitney8 can then be obtained:

σcr =
π2Ω

h

(
m2

a2
+ ψ

n2

b2

)−1

(63)

where ψ is equal to νxy due to the Poisson effect if the edges at y = 0 and y = b are immovable in the y

direction. When the plate is compressed only in the x direction, ψ is equal to 0. The constant Ω depends

on the bending stiffness components, the buckling mode, and the dimension of the plate. Using the reduced

bending stiffness method, an unsymmetrically laminated plate can be treated as an orthotropic plate. For

quasi-isotropic laminates, the relation D∗
ij = Dij is valid, and Ω can be calculated using

Ω = D11
m4

a4
+ 2(D12 + 2D66)

m2n2

a2b2
+D22

n4

b4
(64)
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Taking the critical buckling stress for the undamaged plate as a reference, the critical buckling stress σ̃cr

of a damaged plate is normalized as follows:

ζ =
σ̃cr
σcr

(65)

The energy equation (62) implies that the critical buckling load is proportional to the bending energy stored

in the plate. The relative decrease of the critical buckling load due to the presence of impact damage is

equivalent to the relative decrease of the bending energy of the plate. Thus, the normalized critical buckling

load ζ is equal to the bending energy reduction ratio:

ζ =

∫∫
S1
u(δw)dxdy +

∫∫
S2
ũ(δw)dxdy∫∫

S1+S2
u(δw)dxdy

= 1−
∫∫

S2
[u(δw)− ũ(δw)]dxdy∫∫
S1+S2

u(δw)dxdy
(66)

For an undamaged infinitesimal element, the bending energy based on the displacement field in equation

(58) is

u(δw) ≈ π4

2
Ωa2mn

(
sin

mπx

a
sin

nπy

b

)2
(67)

This equation is an approximate equation, as the term π4D66
m2n2

a2b2

(
cos 2mπx

a + cos 2nπy
b

)
has been neglected

to simplify the analysis. The neglected term is generally small in comparison to the retained term. The

integral of the neglected term over the entire rectangular surface is equal to 0. For the bending energy ũ(δw)

in a damaged infinitesimal element, Ω is replaced by Ω̃:

Ω̃ = D̃∗
11

m4

a4
+ 2(D̃∗

12 + 2D̃∗
66)

m2n2

a2b2
+ D̃∗

22

n4

b4
(68)

where the resultant reduced bending stiffness matrix is given by

[D̃∗] =
n∑

i=1

[D̃∗
i ] (69)

Observing that
∫ b

0

∫ a

0

(
sin mπx

a sin nπy
b

)2
dxdy = ab

4 , the normalized critical buckling load can be rewritten as

ζ = 1−

(
1− Ω̃

Ω

)
4

ab

∫∫
S′

(
sin

mπx

a
sin

nπy

b

)2
dxdy (70)

For the sake of convenience, the integral over the circular area S′ in equation (70) is evaluated using numerical

integration on the basis of Simpson’s rule, in which the numerical error is kept below 10−6. The integration

over a square domain with its area equal to S′ forms a rough approximation.

A rectangular flat plate has a stable equilibrium path after buckling. In the buckled state, the plate is

still capable of carrying additional load. However, the stress in the plate is no longer uniformly distributed
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and the central part of the plate is less heavily loaded compared with the parts close to the supported edges.

If the plate fails after buckling, the material compression failure strength σm should be higher than the

critical buckling σcr. According to the von Kármán postbuckling strength theory, the ultimate strength of

the buckled plate is equal to (see Brush and Almroth17):

σult =
√
σcrσm for σm ≥ σcr (71)

Finally, the remaining ultimate compression strength σ̃ult of a damaged plate can be expressed in the

following form:

σ̃ult =
√
ζσcrσm for σm ≥ σcr (72)

Up to now, all equations are available, which make it possible to calculate the residual strength from the

impact energy. This completes the derivation of the analytical solutions for the impact damage resistance

and tolerance of laminated composite plates.

VI. Verification and Comparisons

For the purpose of verifying the theoretical work, a series of experiments is conducted in conformance

with the standard impact and compression-after-impact (CAI) testing method as specified in BSS-726018.

The prediction accuracy of the analytical solutions can then be determined on the basis of the correlation

with the experimental results obtained. For the sake of brevity, the experiments are described in broad

outlines here; detailed information can be found in Huang19.

A. Experiments

The impact tests are performed by means of a Dynatup 8250 instrumented drop weight impact machine.

The impactor mass is 3.035 kg and the diameter of the semispherical impactor nose is 20 mm. The nominal

impact energy varies from 5 to 30 J. The extent of impact damage is measured using an ultrasonic C

scan. The CAI tests are carried out with a Schenck 250 kN screw-driven tensile testing machine. The

compression speed is 0.1 mm/min. The standard impact test fixture with a window of 125 × 75 mm and

the standard CAI test fixture are shown in Figure 6. The specimens are prepared from two different kinds

of commercial unidirectional thermoplastic prepregs, carbon fiber (T300) reinforced polyetherimide (PEI)

and carbon fiber (AS4) reinforced polyetheretherketone (PEEK), which is designated aromatic polymer

composite (APC-2). The T300/PEI specimens have a [454, 04, -454, 904]s layup and the external dimensions

are 152.4 × 101.6 × 4.64 mm. The APC-2 specimens have a [455, 05, -455, 905]s layup and the external

dimensions are 152.4× 101.6× 5.20 mm.
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Figure 6. Standard impact and CAI test fixture

The load history recorded shows that the duration of an impact event often lies in the order of several

milliseconds. The impact load increases from 0 to the peak value during the deformation portion of the

impact and decreases back again to 0 during the restoration period. Neglecting the contact indentation, the

plate deflection δ at time t is taken as equal to the impactor displacement, which can be calculated by means

of the following convolution integral:

δ(t) = v0t−
1

m

∫ t

0

P (τ)(t− τ)dτ (73)

where m is the impactor mass and v0 is the initial velocity of the impactor just before impact. Equation (73)

expresses the impactor response to the force P in the form of a superposition of impulse responses. Through

twice differentiation with respect to time t, it is clear that equation (73) is equivalent to Newton’s second

law. The load deflections curves are then obtained by plotting the measured load signal P (t) against the

calculated deflection signal δ(t). To facilitate the comparison, the experimental graphs are discussed along

with the analytical results in later paragraphs (see also Appendix B).

When the impact energy is higher than 15-20 J, fiber breakages are clearly perceptible from the specimen

surface. For lower energy levels, matrix cracks occur on a limited scale; the damage is barely visible except

for a permanent contact indentation. The ultrasonic C scan results reveal that all specimens contain an

approximately circular damage zone that consists mainly of delaminations. Through the microscopic study

of the cross sections of the damage zone, it is observed that large delaminations are frequently located along

the -45/90 and 90/-45 interfaces.

From the compression tests, it turns out that the impacted specimens fail through the middle, where the

damage zone is located. The nonimpacted specimens fail at the top clamp edge. In all cases, the in-plane

load deflection curves go linearly up until the catastrophic failure occurs. The maximum compressive load

decreases with the increasing impact energy level. Using a laser measurement, it is observed that the final

failure is related to the global buckling of the plates and the delamination buckling mechanism does not play

a part in the tests.
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B. Delamination Initiation

The laminate layup notation [45n, 0n, -45n, 90n]s is, in fact, meant for manufacturing purposes; for the

analyses, the simplified layup [45, 0, -45, 90]s is used with a modified ply thickness. The analytical model

predicts that a delamination closer to the midplane leads to more bending stiffness reduction, and the

maximum is found at the -45/90 interface. As there is no mechanical property mismatch between two

adjoining 90-90 layers, the 90/90 interface is not a true interface for crack formation (see Table 1). Using the

isotropic approximation based on the midthickness delamination, the bending stiffness of the delaminated

sublaminates is overestimated to a large extent, as the anisotropy-related coupling effects are omitted. The

material properties needed for the calculations are given in Appendix A.

Table 1. Bending stiffness reduction without matrix cracking

i Sublaminates Λ for T300/PEI Λ for APC-2

1 [45],[0,-45,902,-45,0,45] 0.53 0.55

2 [45,0],[-45,902,-45,0,45] 0.27 0.29

3 [45,0,-45],[902,-45,0,45] 0.13 0.15

- Isotropic approximation 0.25 0.25

The theoretical delamination threshold loads in the form of the lower and upper bounds are presented in

Table 2. The experimental delamination threshold loads are determined on the basis of the load deflection

curves in Figure 7. The onset of large-scale delamination growth manifests itself in the sudden change of the

structural stiffness; therefore, the delamination threshold loads correspond with the knee points in the load

deflection curves. As expected, the predictions allowing for the effects of material anisotropy and property

degradation due to matrix cracking show the best agreement with the measurements. Other predictions, by

neglecting these effects, overestimate the delamination threshold loads to a different degree. With regard

to the material properties, APC-2 has a higher transverse strength and fracture toughness than T300/PEI

and is therefore less susceptible to matrix cracking and delamination. Also, a slightly larger thickness of

APC-2 laminates contributes to their better impact resistance compared with T300/PEI laminates. Through

comparison, it is further found that the experimental values can be predicted by averaging the theoretical

lower and upper bounds. The accuracy achieved for T300/PEI and APC-2 laminates is 88.1% and 90.9%,

respectively. In later calculations, the average values are used when the delamination threshold loads are

demanded. For a conservative prediction, the lower bound is still recommended.
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Table 2. Comparison of delamination threshold loads [kN]

T300/PEI

Experimental Analytical Lower Upper Average

Current model a 2.4 3.8 3.1

2.7 Current model b 3.5 5.5 4.5

Isotropic model b 5.3 8.4 6.8

APC-2

Experimental Analytical Lower Upper Average

Current model a 4.1 6.5 5.3

4.8 Current model b 4.7 7.4 6.0

Isotropic model b 6.5 10.3 8.4

aMatrix cracking taken into account
bMatrix cracking left out of consideration

P
[k
N
]

P
[k
N
]

Theoretical

Theoretical

T300/PEI APC-2

δ [mm] δ [mm]

Figure 7. Theoretical vs experimental load deflection curves

C. Delamination Growth

The prediction of the bilinear load deflection curves, particularly the delamination propagation curves,

requires solving the minimization problem defined in equation (47) to determine the resultant critical energy

release rate GC . For a first-order approximation, the damage mechanism matrix cracking is neglected.

The deflection w0 is estimated on the basis of a damage zone of radius 3h. The outcomes of the local

minimizations for 1, 2, · · · , 6 delaminations are displayed per row in Table 3 so that the global minimum can

be determined in an orderly manner. For the current stacking sequence, it turns out that the increase rate of

the fracture energy surpasses the increase rate of the potential energy release from two delaminations. That

the minimum Λ value is found at two delaminations for both the T300/PEI and APC-2 laminates pertains

to the fact that the two materials have only slight differences in elastic properties (the fiber-dominated

elastic behavior). This implies that the further delamination growth calculations can be based on these two
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delaminations along the -45/90 and 90/-45 interfaces. The formation of more delaminations is energetically

unfavorable. Using the GC values obtained, 2.6 kJ/m2 for T300/PEI and 3.0 kJ/m2 for APC-2, all other

relevant parameters can easily be calculated by means of the closed-form equations.

Table 3. Calculation resultant critical energy release rate [kJ/m2]

T300/PEI APC-2

n Sublaminates Λmin GC Sublaminates Λmin GC

1 [45,0,-45],[902,-45,0,45] 0.1268 1.6 [45,0,-45],[902,-45,0,45] 0.1466 1.8

2 [45,0,-45],[902],[-45,0,45] 0.0917 2.6 [45,0,-45],[902],[-45,0,45] 0.1150 3.0

3 [45,0,-45],[902],[-45],[0,45] 0.1079 3.5 [45,0],[-45],[902],[-45,0,45] 0.1383 4.1

4 [45,0],[-45],[902],[-45],[0,45] 0.1231 4.4 [45,0],[-45],[902],[-45],[0,45] 0.1643 5.2

5 [45],[0],[-45],[902],[-45],[0,45] 0.1497 5.5 [45],[0,-45],[902],[-45],[0],[45] 0.2023 6.4

6 [45],[0],[-45],[902],[-45],[0],[45] 0.1785 6.6 [45],[0],[-45],[902],[-45],[0],[45] 0.2443 7.7

Using an average membrane stiffness constant β equal to 2π
(

1
3 + 1√

17

)
, the load deflection curves are

predicted. As shown in Figure 7, the experimental delamination propagation curves of T300/PEI are quite

smooth and exhibit a slightly nonlinear behavior. At low energy levels, the load deflection curves are

accurately predicted by the linear theoretical model. At higher energy levels, the loss of accuracy resulting

from the simplifications, especially the linearization and boundary condition modification, becomes larger.

However, the differences remain limited and the first-order approximation appears to still be reasonably

satisfactory. The APC-2 curves contain more fluctuations due to the occurrence of higher vibrational modes.

It can still be observed that the theoretical propagation line follows the same trend as the experimental

curves; the predicted slope, especially, is in good agreement with the measurements.

From the agreement found between the analytical and experimental load deflection curves, it is evident

that the analytical model should be capable of providing an accurate prediction of the damage area, because

the application of the law of conservation of energy will not introduce unacceptable inaccuracies. In Figure

8, the damage area is plotted against the peak impact load and the impact energy. The experimental results

are presented in the form of data points, and the theoretical curves are overlaid on the graphs for comparison.

In the graphs of the damage area vs the peak impact load, it can be seen that the theoretical predictions for

both the T300/PEI and APC-2 laminates agree well with the empirical data, despite the fact that the APC-2

measurement data show more scatter. In the graphs of the damage area vs the impact energy, there is also

an excellent agreement between the analytical and experimental results for both T300/PEI and APC-2.
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Figure 8. Damage area as a function of the peak impact load and impact energy

D. Residual Compression Strength

The residual strength calculations use the determination of the material compressive strength σm under

the biaxial loading condition as a starting point. In the present study, the material compressive strength

is extracted from the experimental ultimate strength of the undamaged plates. For a plate with given

dimensions and layup, the buckling analysis predicts that the first buckling mode has a single half-wave in

the x and y directions (m = 1 and n = 1) and that the second mode has two half-waves in the x direction

and one half-wave in the y direction (m = 2 and n = 1). The accompanying critical buckling stresses of

the undamaged plates of mode I and II are listed in Table 4. From the magnitudes of the critical bucking

stresses, it is clear that the first mode really occurs during the tests and the higher modes are nonactive.

That the mode I σcr is lower than the measured ultimate strength σult means that the plates first buckle

before the final failure. This confirms that the von Kármán postbuckling strength theory is applicable and

justifies that σult can be converted to σm using equation (71).

Table 4. Overview strengths

Strength [MPa] T300/PEI APC-2

σult experimental 264 339

σcr mode I theoretical 225 269

σcr mode II theoretical 374 443

σm experimental 310 427
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To illustrate the overall predictive performance of the models with regard to the impact and postimpact

compression processes, the predicted and measured residual strength characteristics are displayed in Figure

9. Because a part of the impacted specimens is cut through the middle for the cross-sectional microscopic

investigation, Figure 9 contains somewhat fewer data points compared to Figure 8. As can be seen, both

the T300/PEI and APC-2 data exhibit limited scattering, and there is a very close correlation between the

theoretical and experimental results. Summarizing the previous paragraphs, all relevant quantities in the

models agree with the experiments simultaneously. Although many complicating factors are removed during

the development of the idealized models, the experimental verification shows that the models formed are

likely sufficient to capture the most essential features, enabling fast prediction of the impact resistance and

damage tolerance characteristics of laminated plates with satisfactory accuracy.
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Figure 9. Correlation between the theoretical and experimental results
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VII. Conclusions

In the present study, analytical solutions in a relatively simple and general form have been derived and

subsequently validated successfully against experiments. On the basis of the results obtained, the following

conclusions can be drawn:

1. The localized deformation field, which is uncoupled from the global deformation field, appears to be

appropriate for the energy release rate determination as the analysis can be significantly simplified,

whereas the accuracy can be practically preserved and the error margin is known.

2. For delamination initiation analyses, it is important that the material anisotropy is accounted for in

the constitutive model.

3. The lower bound of the delamination threshold load is a conservative delamination onset criterion

and is therefore a useful means during the design of impact-resistant composite structures. From

the experimental verification, it turns out that the average of the upper and lower bounds forms a

reasonable approximation of the reality.

4. For the modeling of transverse matrix cracking, the damage-mechanics-based model for the material

property degradation can be consistently integrated with the fracture-mechanics-based delamination

model.

5. When establishing the energy balance in fracture analyses, the formation of multiple delaminations can

be conveniently taken into consideration on the basis of the most energetically favorable configuration.

6. The membrane deformation of the damage zone leads to the stable delamination propagation, which

is frequently encountered during impact testing of composite materials.

7. Neglecting higher-order effects, the resulting damage area is proven to be quadratically related to the

peek impact load and linearly related to the impact energy.

8. With regard to the damage tolerance in the context of postbuckling strength reduction, the application

of the energy-based stability criterion, particularly the introduction of the bending energy reduction

ratio, leads to an efficient, robust, and accurate formulation of the critical buckling load of a damaged

plate in relation to a perfect plate.

9. The analytical solutions obtained are expected to improve the fundamental understanding of the impact

resistance and damage tolerance of composite structures. Because of their simplicity and accuracy, the

solutions can be used as design tools to evaluate design alternatives and, in this way, accelerate the

entire design process.
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Appendix A: Mechanical property unidirectional prepregs

Table 5. Properties of unidirectional T300/PEI and APC-2

T300/PEI

Elastic Properties Strength Properties Fracture Properties

E1 119.8 GPa Xt 1338 MPa GIC 1.2 kJ/m2

E2 7.8 GPa Xc 730 MPa GIIC 1.6 kJ/m2

G12 3.5 GPa Yt 24 MPa

G23 2.8 GPa Yc 151 MPa

ν12 0.32 S12 84 MPa

ν23 0.40

APC-2

Elastic Properties Strength Properties Fracture Properties

E1 109.8 GPa Xt 2050 MPa GIC 1.3 kJ/m2

E2 10.1 GPa Xc 1200 MPa GIIC 1.8 kJ/m2

G12 3.7 GPa Yt 87 MPa

G23 1.3 GPa Yc 230 MPa

ν12 0.30 S12 185 MPa

ν23 0.42

Appendix B: Remaining load deflection curves

For the sake of completeness, other load deflection curves from the impact tests are shown in Figure 10.

That these results are very similar to the results already discussed demonstrates the good repeatability and

reproducibility of the experiments.
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Figure 10. Second batch of load deflection curves

31 of 33

American Institute of Aeronautics and Astronautics



Acknowledgments

The initial model was realized at the University of Twente within the framework of the BRITE/EURAM

III Project, Adaptive Composite Delamination Modeling, BE-3580. A further refinement of the model was

performed at Crea Mech Co. Ltd. The financial support from the European Community, the University of

Twente and Crea Mech is gratefully acknowledged. The authors would like to thank F. Eising for stimulating

discussions and G.N. Heurneman for his contribution to the experimental work.

References

1Abrate, S., “Impact on laminated composite materials,” Applied Mechanics Review , Vol. 44, No. 4, 1991, pp. 155–190.

2Bartus, S. D. and Vaidya, U. K., “A review: Impact damage of composite materials,” Journal of Advanced Materials,

Vol. 39, No. 3, 2007, pp. 3–21.

3Cantwell, W. J. and Morton, J., “The impact resistance of composite materials - A review,” Composites, Vol. 22, No. 5,

1991, pp. 347–362.

4Elder, D. J., Thomson, R. S., Nguyen, M. Q., and Scott, M. L., “Review of delamination predictive methods for low

speed impact of composite laminates,” Composite Structures, Vol. 66, No. 1–4, 2004, pp. 677–683.

5Richardson, M. O. W. and Wisheart, M. J., “Review of low-velocity impact properties of composite materials,”

Composites, Vol. 27, No. 12, 1996, pp. 1123–1132.

6Davies, G. A. O. and Robinson, P., “Predicting Failure by debonding/Delamination,” AGARD Conference Proceedings

530, Debonding/Delamination of Composites, Neuilly-sur-Seine, France, 1992, pp. 5.1–5.28.

7Olsson, R., Donadon, M. V., and Falzon, B. G., “Delamination threshold load for dynamic impact on plates,” International

Journal of Solids and Structures, Vol. 43, No. 10, 2006, pp. 3124–3141.

8Jones, R. M., Mechanics of composite materials, Taylor & Francis, Philadelphia, 1998.

9Lord Rayleigh, J. W. S., “On the prediction of vibrations by forces of relatively long duration, with application to the

theory of collisions,” Philosophical Magazine, Vol. 6, No. 11, 1906, pp. 283–292.

10Timoshenko, S. and Woinowsky-Krieger, S., Theory of plates and shells, McGraw-Hill, New York, 1959.

11Chang, F. K. and Lessard, L. B., “Damage tolerance of laminated composites containing an open hole and subjected to

compressive loadings: Part 1 – Analysis,” Journal of Composite Materials, Vol. 25, No. 1, 1991, pp. 2–43.
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