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Nomenclature

A Extensional stiffness matrix

d Damage parameter

D Damage state matrix

E Elastic modulus

E Energy ratio matrix

F Mode interaction matrix

G Shear modulus

N In-plane load

Q Reduced stiffness matrix

S Shear strength or compliance matrix

T Transformation matrix

V Strain energy per unit volume

X Longitudinal strength

Y Transverse strength

γ Shear strain

ϵ Normal strain

Λ Interaction parameter

ν Poisson’s ratio

ρ Magnitude of load/strain vector

σ Normal stress

τ Shear stress

Υ Failure indicator

Φ Energy ratio

ψ Orientation of load/strain vector
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1. Introduction

The in-plane strength of fibre reinforced polymer composites is a subject that has

fascinated many scientists and engineers since the introduction of these materials.

The beginning of a rational understanding of the strength of isotropic materials is

credited to Galileo Galilei (1638), who concluded that failure would occur when

the critical stress was attained. The title of his book Discourses on two new

sciences reflects Galilei’s view that the strength of materials is as important as

the motion of objects. Over the years, different isotropic failure criteria have

been developed by different scientists. In the Coulomb (1776) criterion, failure

occurs when the shear stress on the failure plane becomes equal to the sum of the

cohesive strength of the material and the friction between the fracture surfaces.

The Rankine (1857) criterion uses the maximum normal stresses as the governing

physical parameters. The Tresca (1864) criterion is also known as the maximum

shear stress criterion that is still employed at present. The Poncelet–Saint-Venant

(1870) criterion compares the maximum principal strains with the limiting critical

values of the material. In the Beltrami (1885) criterion, yielding occurs when the

total strain energy reaches the critical value of the material. In the Mohr (1900)

criterion, the failure envelope is calculated by means of Mohr’s circle. In the von

Mises (Huber 1904, von Mises 1913 and Hencky 1924) criterion that finds favour

in present-day structural analyses, yielding of the material is predicted on the

basis of the distortion energy.

For unidirectional laminae under combined in-plane stresses, a variety of

anisotropic failure criteria have been proposed over the past century (Orifici et

al. 2008). The commonly used anisotropic failure criteria can be grouped into the

following three classes: non-interactive criteria that comprise the maximum stress

and maximum strain criteria; interactive criteria that allow for the full interaction

of multi-axial stresses; and hybrid criteria that combine selected aspects of the

aforementioned two classes of failure criteria. As is known, the non-interactive

criteria generally give non-conservative predictions. The interactive criteria such
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as the Norris (1950), Marin (1957), Fischer (1960), Tsai-Hill (1965), Hoffman

(1967), Chamis (1969), Tsai-Wu (1971) and Cowin (1979) criteria originate from

the Hill (1948) criterion, which is a generalization of the von Mises criterion.

The failure criteria in this category tend to be phenomenological and empirical

in nature, not mechanistic; they are often criticized for ignoring the diversity

of failure modes which are possible (Rowlands 1985 and MIL-HDBK-17 2002).

Among the hybrid criteria, the Hashin (1980) criterion that makes use of the

stress invariants can be shown to be inconsistent with the classical isotropic failure

criteria. In the more complex Puck-Schürmann (1998) and Dávila-Camanho-Rose

(2005) criteria, much effort has been expended to modify and to extend the

Coulomb-Mohr criterion, which can be viewed as a generalization of the Tresca

criterion. In practical terms, the main drawback of the failure criteria along this

direction is that a generous number of non-standard material parameters have to

be inserted, which can not be readily determined by testing. In brief, none of the

existing anisotropic failure criteria is universally satisfactory.

To analyse the failure behaviour of multidirectional laminates, the progressive

damage methodology can be applied, which relies on a careful accounting of

the sequence of local ply failures leading up to the final laminate failure.

During the World-Wide Failure Exercise (WWFE), diverse existing progressive

damage models, each incorporating a dissimilar lamina failure criterion, have

received a thorough comparison and joint evaluation. At the end of the

exercise, the organizers came to the conclusion that the general picture of the

damage development in composite materials is still not well understood, as the

discrepancies between the theoretical predictions and experimental data remain

intolerably large in many cases (Hinton et al. 2004). On the laminate level, the

implementation of the lamina failure criteria raises several problems; the most

severe of these is apparently the following: it is unclear how the failure modes in

the same and different plies interact with each other. If a non-interactive criterion

is used on a ply-by-ply basis, the failure envelopes obtained are made up of line
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segments connected end to end, where the failure stresses or strains are strongly

overestimated in the acute angles. If an interactive criterion is used, the plies after

the damage will frequently be stronger than the plies before the damage, ending

in various irregular failure envelopes with a zigzag pattern. If a hybrid criterion

is used, the interaction between the failure modes will not always occur in the

right place and at the right time phrase, as the interactive behaviour is assumed

a priori and in a certain sense ad arbitrium. Hence, the major challenge is to

come to a full understanding of the underlying mechanism of the failure mode

interaction, so that the progressive damage methodology can be further enhanced

to achieve substantially higher accuracy.

Adopting an energetic approach, the complicated failure behaviour of

laminated composites under out-of-plane loading can be analytically modelled

(Huang et al. 2008 and Huang 2014). It appears that some of the ideas from the

energetic school of Ostwald and Mach (Dugas 1955) can be further developed

and brought to fruition, thereby enriching the field of mechanics of composite

materials. The objective of the present study is to develop a robust and efficient

model, which is capable of providing reliable predictions of the failure behaviour

of laminated composites under in-plane loading. It is intended to build a new

progressive damage model by applying the energy balance principle of Griffith

(1920), which states that failure occurs when the energy available in the system is

sufficient to overcome the resistance of the material. The energy balance principle

can be deduced from the law of conservation of energy, which states that the

amount of energy in a closed system remains constant. The model development is

guided by the parsimony principle, which states that ‘models should be as simple

as possible, but no simpler (Albert Einstein)’. That means that the progressive

damage model should be developed in such a way that the simplicity of concept

and ease of use is combined with the generality as best as possible. The model

validation is undertaken against the experimental data from the WWFE. Finally,

conclusions are presented along with future outlooks.
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2. Lamina Failure Behaviour

To develop a physically well-founded progressive damage model, the best place

to start is a unidirectional lamina, which is the basic building block for

multidirectional laminates. The interest lies in the theoretical derivation of the

failure surfaces of the lamina from the uniaxial stress strain diagrams that can

be measured using standardized techniques. The lamina level analysis involves

only macromechanical properties and takes full account of the effects of material

anisotropy and multiple failure modes. The stresses and strains considered here

are planar due to the assumed state of plane stress.

(a)Constitutive Equations

The uniaxial stress strain diagrams of an orthotropic lamina are shown

schematically in figure 1. In the longitudinal direction, the lamina exhibits

generally a linear deformation behaviour up to failure, because the deformation is

dominated by the fibres. In the transverse and shear directions, the deformation

behaviour is non-linear in the large deformation region, as the deformation is

dominated by the matrix material. The transverse tensile deformation is virtually

linear, because the deformation is limited to a small range. In this study, the

transverse compressive deformation is linearized on the basis of the initial stiffness.

The highly non-linear shear deformation behaviour can be represented by using

the Ramberg-Osgood (1943) equation that consists of a linear and exponential

part. If necessary, the transverse compressive deformation can be modelled with

the same equation. The endpoints of the stress strain curves are characterized by

the longitudinal tensile strength XT , the longitudinal compressive strength XC ,

the transverse tensile strength YT , the transverse compressive strength YC and

the in-plane shear strength S. In this paper, all strength values of the material

are by definition positive.
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Figure 1. Uniaxial stress strain diagrams of lamina

For the normal deformations, the generalized Hooke’s law applies:
⎧
⎨

⎩
ϵ1

ϵ2

⎫
⎬

⎭=

⎡

⎣ 1/E1 −ν12/E1

−ν12/E1 1/E2

⎤

⎦

⎧
⎨

⎩
σ1

σ2

⎫
⎬

⎭ (2.1)

where σ1 is the longitudinal stress, σ2 is the transverse stress, ϵ1 is the longitudinal

strain, ϵ2 is the transverse strain, E1 is the longitudinal elastic modulus, E2 is

the transverse elastic modulus, and ν12 is the major Poisson’s ratio. For the shear

deformation, the Ramberg-Osgood equation reads:

γ12 =
τ12
G12

+ α
(τ12

S

)β
(2.2)

where τ12 is the shear stress, γ12 is the shear strain, G12 is the shear modulus, S

is the shear strength, α and β are non-dimensional material constants. Equation

(2.2) has an advantage that the integral
∫
τ12dγ12 can be analytically evaluated,

but has a disadvantage that τ12 has to be numerically calculated from γ12. In

Bogetti et al. (2004), an alternative form of the Ramberg-Osgood equation is

used, which has an advantage that τ12 can be readily calculated from γ12, but has

a disadvantage that the integral
∫
τ12dγ12 is analytically unsolvable:

τ12 =
G ′

12γ12[
1 +

(
G ′

12γ12
S′

)ς]1/ς (2.3)
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where the initial shear modulus G ′
12, the asymptotic stress level S′ and the shape

parameter ς are the constants that fit the empirical data best. For computational

considerations, equations (2.2) and (2.3) can be used in parallel, i.e. one for the

shear energy evaluation, the other for the strain stress relation. Then it follows

that the strain energy stored in the lamina per unit volume is given by:

V =
σ21
2E1

− ν12σ1σ2
E1

+
σ22
2E2

+
τ212
2G12

+
τβ+1
12

K
, K =

β + 1

αβ
Sβ (2.4)

Because of the orthotropic behaviour of the material, there is no coupling between

the normal deformations and the shear deformation.

(b)Deformation and Failure Modes

As illustrated in figure 2, the deformations in the lamina can be decomposed

into the following three modes: the longitudinal deformation mode, the transverse

deformation mode and the shear deformation mode. The longitudinal mode occurs

due to pure longitudinal tension or compression, the transverse mode occurs due

to pure transverse tension or compression, and the shear mode occurs due to

pure shear loading. In the transverse mode, the contraction in the longitudinal

direction due to the deformation in the transverse direction is neglected, as the

longitudinal deformation is dominated by the fibres. For these reasons, the strain

energy V in equation (2.4) is separated into the following three parts:

VI =
σ21
2E1

− ν12σ1σ2
E1

, VII =
σ22
2E2

, VIII =
τ212
2G12

+
τβ+1
12

K
(2.5)

where VI is the longitudinal deformation energy, VII is the transverse deformation

energy, and VIII is the shear deformation energy.

The failure modes that are expected to occur in the lamina consist of the fibre

tensile failure mode, the fibre compressive failure mode, the matrix tensile failure

mode, the matrix compressive failure mode and the matrix shear failure mode

(see figure 3). For these failure modes, the corresponding strength values are XT ,

XC , YT , YC and S, respectively. On the basis of equations (2.1) and (2.2), the
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critical energy of the different failure modes can be expressed as:

VXT =
X2

T

2E1
, VXC =

X2
C

2E1
, VY T =

Y 2
T

2E2
, VY C =

Y 2
C

2E2
, VS =

S2

2G12
+

Sβ+1

K
(2.6)

In line with the deformation modes, the five failure modes are reduced to three

failure modes, viz. the longitudinal failure mode, the transverse failure mode and

the shear failure mode:

VX =
X2

2E1
, VY =

Y 2

2E2
, VS =

S2

2G12
+

Sβ+1

K
(2.7)

X =H(σ1)XT + [1−H(σ1)]XC

Y =H(σ2)YT + [1−H(σ2)]YC
(2.8)

σ1 σ1

σ1 σ1

σ2

σ2

σ2

σ2

τ12

τ12

1
2

1
2

1
2

1
2

1
2Tensile deformation

Compressive deformation

Tensile deformation

Compressive deformation

I. Longitudinal mode II. Transverse mode III. Shear mode

Figure 2. Deformation modes of unidirectional lamina
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where H is the Heaviside step function. This means that X =XT for σ1 > 0,

X =XC for σ1 < 0, X = (XT +XC)/2 for σ1 = 0, Y = YT for σ2 > 0, Y = YC for

σ2 < 0 and Y = (YT + YC)/2 for σ2 = 0.

σ1

σ1

σ1

σ1

σ2

σ2

σ2

σ2

τ12

τ12

Fibre tensile failure

Fibre compressive failure

Matrix tensile failure

Matrix compressive failure

Matrix shear failure

I. Longitudinal mode II. Transverse mode III. Shear mode

Figure 3. Failure modes of unidirectional lamina

(c)Lamina Failure Criterion

As postulated by Griffith (1920), if a crack is in equilibrium, the decrease

of strain energy must be equal to the increase of surface energy due to crack

extension. For a system with multiple cracks, it seems often more convenient

to look at the energy balance in a different perspective, namely from the

representative volume instead of the crack area. In point of fact, the energy

balance principle can be formulated in a more general form, regardless of whether

the material exhibits a brittle or tough behaviour in a certain direction: failure

occurs when the energy released from the system equals or exceeds the energy

dissipated due to the damage formation. For a unidirectional lamina, it follows
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from the energy balance principle that:

Longitudinal failure occurs, if VI ≥ VX ;

Transverse failure occurs, if VII ≥ VY ;

Shear failure occurs, if VIII ≥ VS .

(2.9)

As a matter of fact, fracture mechanics and damage mechanics can be thought

of as two physically equivalent formulations that have different virtues. This

resembles the concept of discrete and continuous systems in the field of dynamics

(Meirovitch 1986). As fracture mechanics focuses on the behaviour of the

individual cracks, it is suitable to the problems involving one dominant crack

or a few large cracks (Anderson 1991). As damage mechanics does not treat

the individual cracks, but instead considers the damage state parameters as

the key variables, it is advantageous for the problems in which the microcracks

are distributed in a statistically homogeneous manner (Allix & Hild 2002).

Accordingly, fracture and damage mechanics in a merged form can serve as

the foundation of the progressive damage methodology. This resolves the issues

such as the conventional fracture mechanics approach is inappropriate for the

damage initiation problems and the continuum damage mechanics approach

usually demands a laborious micromechanical failure analysis.

On the basis of relations (2.9), the following energy ratios are introduced:

Φ1 =
VI

VX
=
σ21
X2

− 2ν12
σ1σ2
X2

, Φ2 =
VII

VY
=
σ22
Y 2

, Φ3 =
VIII

VS
=

τ212
2G12

+
τβ+1
12
K

S2

2G12
+ Sβ+1

K

(2.10)

The energy ratios can be used to assess whether failure occurs in the material

and if so to identify which failure mode occurs. If a non-critical failure mode

occurs that does not threaten the structural integrity, it seems plausible to assume

that the strain energy stored in the remaining modes remains unchanged, as the

structure is still capable of withstanding the applied loads. Therefore, the non-

critical modes can be considered to be independent of each other. Setting now

the non-critical modes aside, if a critical failure mode occurs that is associated
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with the catastrophic failure of the structure, it can be expected that the strain

energy in one mode can take occasion to flow to another mode during the unstable

damage growth. For this reason, the critical modes are interactive with each other

because of the emergence of the energy flow within the system. For a unidirectional

lamina, three distinct scenarios have to be analysed as follows. In the first case, all

three failure modes are supposed to be critical; failure occurs, when the following

expression returns true:

NOT
(
Φ1 ≤ 1 AND Φ2 ≤ 1 AND Φ3 ≤ 1

)
(2.11)

In the second case, the failure modes are partly critical; there are three different

possibilities:
NOT

(
Φ1 ≤ 1 AND Φ2 ≤ 1

)
OR Φ3 ≥ 1

NOT
(
Φ1 ≤ 1 AND Φ3 ≤ 1

)
OR Φ2 ≥ 1

NOT
(
Φ2 ≤ 1 AND Φ3 ≤ 1

)
OR Φ1 ≥ 1

(2.12)

In the third case, all three failure modes are non-critical; failure occurs, if the

following is satisfied:

Φ1 ≥ 1 OR Φ2 ≥ 1 OR Φ3 ≥ 1 (2.13)

In expressions (2.11-2.13), AND, OR and NOT are Boolean operators. For a

unidirectional fibre composite, it is known that all three failure modes are critical

and therefore interact with each other under practical test conditions. For a

lamina embedded within a laminate, the failure mode interaction is a phenomenon

that depends upon the laminate configuration and loading conditions; therefore,

the criticality of the failure modes has to be determined case-by-case during the

progressive damage analysis.

To reduce expressions (2.11-2.13) to one single expression, the following

indicator Λ is introduced:

Λj =

⎧
⎨

⎩
1 if failure mode is critical

0 if failure mode is non-critical
(2.14)
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where j = 1, 2, 3. For the critical modes, the domain enclosed by the failure surface

is given by:

(Λ1Φ1 − 1)(Λ2Φ2 − 1)(Λ3Φ3 − 1)≤ 0 (2.15)

Expanding relation (2.15) and discarding the higher order terms, the following

relation can be obtained:

Υ=Λ1Φ1 + Λ2Φ2 + Λ3Φ3 ≤ 1 (2.16)

For the non-critical modes, there holds:

Υ ′ =max
(
Λ′
1Φ1,Λ

′
2Φ2,Λ

′
3Φ3

)
≤ 1, Λ′

j = 1− Λj (2.17)

Combining relations (2.16) and (2.17) with each other, the general failure criterion

for the unidirectional lamina becomes then:

max
(
Υ,Υ ′)= 1 (2.18)

In the three-dimensional energy space VI-VII-VIII, the failure surfaces of the lamina

can be geometrically interpreted as the front surfaces of a tetrahedron, a prism

or a cuboid (see figure 4).

0

VI

VX

VIIVY

VIII

VS

0

VI

VX

VIIVY

VIII

VS

0

VI

VX

VIIVY

VIII

VS

Fully interactive Partially interactive Non-interactive

Figure 4. Different failure surfaces of unidirectional lamina
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(d)Alternative formulation

Instead of the principal stresses σ1, σ2 and τ12, it is also possible to define the

deformation and failure modes on the basis of the principal strains ϵ1, ϵ2 and γ12.

In this way, a second variant of the lamina failure criterion can be obtained:

max
(
Υ̂, Υ̂ ′)= 1 (2.19)

with

Φ̂1 =
ϵ21
ϵu1

2 +
2ν21ϵ1ϵ2
ϵu1

2 ≈ ϵ21
ϵu1

2 , Φ̂2 =
ϵ22
ϵu2

2 , Φ̂3 =

∫γ12
0 τ12dγ12∫γu
12

0 τ12dγ12
(2.20)

where Υ̂ and Υ̂ ′ are calculated in the same manner as Υ and Υ ′. For clarity, it

should be mentioned that the second set of energy ratios Φ̂j is derived using the

simplification 1− ν12ν21 ≈ 1. In Φ̂1, Φ̂2 and Φ̂3, γu12 is the shear failure strain, and

the failure strains ϵu1 and ϵu2 are given by:

ϵu1 =H(ϵ1)ϵ1T + [1−H(ϵ1)]ϵ1C

ϵu2 =H(ϵ2)ϵ2T + [1−H(ϵ2)]ϵ2C
(2.21)

For a self-consistent dataset, ϵ1T , ϵ1C , ϵ2T , ϵ2C and γu12 can be calculated from XT ,

XC , YT , YC and S by using the Hooke’s law and the Ramberg-Osgood equation.

In the remainder of this paper, the two variants that are similar in most

respects are called the stress and strain variant of the lamina failure criterion,

respectively. It is noteworthy that the transverse failure, which is exclusively

controlled by the transverse deformation in the strain variant, is also affected by

the longitudinal deformation in the stress variant. This means that the influence

of the fibres in the stress variant is somewhat stronger than in the strain variant.

On the lamina level, the choice of the stress or strain variant depends on whether

the testing condition is load or displacement controlled. On the laminate level,

the stress variant is better suited for fibre dominated laminates, whilst the strain

variant is better suited for matrix dominated laminates.
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(e)Comparison with Existing Failure Criteria

For the non-interactive case Λ1 =Λ2 =Λ3 = 0, equation (2.18) can be simplified

to the maximum stress criterion:

max
(∣∣∣
σ1
X

∣∣∣,
∣∣∣
σ2
Y

∣∣∣,
∣∣∣
τ12
S

∣∣∣
)
= 1 (2.22)

and equation (2.19) can be simplified to the maximum strain criterion:

max

(∣∣∣∣
ϵ1
ϵu1

∣∣∣∣,
∣∣∣∣
ϵ2
ϵu2

∣∣∣∣,
∣∣∣∣
γ12
γu12

∣∣∣∣

)
= 1 (2.23)

Linearizing the shear deformation, equation (2.18) can be reduced to the following

quadratic form for the fully interactive case Λ1 =Λ2 =Λ3 = 1:

σ21
X2

− 2ν12
σ1σ2
X2

+
σ22
Y 2

+
τ212
S2

= 1 (2.24)

It can be seen that equation (2.24) is a generalization of the maximum strain

energy based yield criterion of isotropic materials, which was originally pioneered

by Beltrami but did not find widespread application for a long time. Assuming the

plastic incompressibility (ν12 = 0.5, a concept that stems directly from the field

of fluid mechanics), equation (2.24) becomes identical to the Hill yield criterion

under a plane stress state. It is logical that the current failure criterion reduces to

the Beltrami criterion in the limit, which is in a certain sense more versatile than

the von Mises criterion. The essential assumption in the von Mises criterion is

that materials do not yield under a hydrostatic stress. Therefore, the stresses in a

material are separated into a hydrostatic part that causes a volume change and a

deviatoric part that causes a shape change of the material. The von Mises criterion

is based on the invariant of the deviatoric stress tensor, which can be linked

together with the distortion energy. In contrast with isotropic materials, fibre

reinforced polymer composite materials are strongly heterogonous and anisotropic

in nature. This implies that a hydrostatic stress on the macromechanical level

inevitably induces distortions on the micromechanical level, and the material must

fail if the stress level is sufficiently high. This justifies why the current failure



16

criterion in equation (2.18) or (2.19) is formulated on the basis of the strain

energy in its totality, without separating the deviatoric and hydrostatic stresses

from each other on the macromechanical scale.

The behaviour of a system with a single crack obeys the same laws of physics

as a system with multiple cracks. Take the three kinematically admissible crack

extension modes introduced by Irwin (1958), viz. the opening, shearing and

tearing mode, the energy criterion for crack propagation can be extended on the

analogy of the failure criterion (2.18) or (2.19) as follows:

max

(
III∑

i=I

ΛiGi

GiC
,
Λ′
IGI

GIC
,
Λ′
IIGII

GIIC
,
Λ′
IIIGIII

GIIIC

)
= 1 (2.25)

where GI, GII and GIII are the strain energy release rates of the three fundamental

fracture modes; GIC , GIIC and GIIIC are the critical energy release rates of

the material; Λi are the indicators for the mode interaction, Λ′
i = 1− Λi. The

occurrence of the fracture mode interaction depends on whether the strain

energy can flow from one deformation mode to another and vice versa. Due to

the interaction, the fracture mode with the maximum energy release rate ratio

becomes active, while the other modes remain non-active. Under a varying loading

condition, it can be argued that the different fracture modes occur frequently in

a sequential manner. The terminology mixed-mode is therefore referred to as the

deformation modes at the crack tip rather than the fracture modes themselves.

For the fatigue problems, the comparison between the failure criteria leads to

the reinterpretation of the cumulative damage rule that was first proposed by

Palmgren (1924) and later popularized by Miner (1945). Suppose that there are k

different stress magnitudes in a spectrum, each contributing ni cycles, and Ni is

the number of cycles to failure of the i-th stress amplitude, the Palmgren-Miner

rule can be derived in a similar way as the interactive part of the failure criterion

(2.18) or (2.19):

ni ≤Ni, i= 1, 2, · · · , k (2.26)
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(
1− n1

N1

)(
1− n2

N2

)
· · ·
(
1− nk

Nk

)
≥ 0⇒

k∑

i=1

ni

Ni
≤ 1 (2.27)

As a matter of fact, the Ni values from the SN -curve (the Wöhler curve)

are measured using initially undamaged specimens; therefore, the gradual

deterioration of the material is not properly accounted for in the fatigue process,

resulting in a non-conservative prediction. Hence, it is necessary to consider Ni

as a function of at least two variables, namely the stress amplitude Si and the

damage parameter Di. To allow better utilization of the experimental data, the

three-dimensional N(S,D)-surface can be constructed instead of the SN -curve.

As the damage state changes in the course of the fatigue process, the corresponding

Ni values should be substituted into the Palmgren-Miner rule, so that the fatigue

life of structures can be evaluated with sufficient engineering accuracy.

3. Progressive Damage Analysis

Aimed at a basic strength model, the present study is restricted to unnotched

symmetrical balanced laminates under combined in-plane loads. In the aerospace

industry, the designers use preferably the fibre dominated laminates; however, the

matrix dominated laminates can not be excluded from consideration, since these

laminates are still usable and the matrix dominated failure can be precluded due

to appropriate choices on a higher structural level during the design phase. In the

current model, the failure modes consist solely of the intralaminar modes, viz.

the longitudinal, transverse and shear failure mode; the interlaminar mode (the

delamination mode) is left out of consideration. The changes of in-plane stiffnesses

associated with fibre rotations and the residual stresses in the polymer matrix due

to the manufacturing processes are neglected for the sake of convenience. Because

of the damage development and the non-linear shear behaviour, the mechanical

response of a laminate to a prescribed set of loads or strains has to be calculated

through an incremental approach.
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(a)Global Structural Response

As is customary, the constitutive behaviour of a multidirectional laminate is

described using the Classical Lamination Theory (CLT, Jones 1998):

{N}i+1
n − {N}in = [A]in

(
{ϵ}i+1

n − {ϵ}in
)

(3.1)

where {N} is the vector of the stress resultants, {N}= {Nx, Ny, Nxy}T ; {ϵ} is the

vector of the mid-surface strains, {ϵ}= {ϵx, ϵy, γxy}T . The superscript i indicates

the discrete points, and the subscript n indicates the failure points. The tangent

stiffness matrix [A]in can be written as:

[A]in =
N∑

k=1

(
tk[T ]

−1
k [Q]ikn[T ]

−T
k

)
(3.2)

where N is the total number of the plies and tk is the thickness of the k-th ply.

The transformation matrix [T ]k of the k-th ply is given by:

[T ]k =

⎡

⎢⎢⎢⎣

cos2 θk sin2 θk 2 sin θk cos θk

sin2 θk cos2 θk −2 sin θk cos θk

− sin θk cos θk sin θk cos θk cos2 θk − sin2 θk

⎤

⎥⎥⎥⎦
(3.3)

where θk is the ply orientation angle. Taking the effects of the damage induced

elastic property degradation into account, the components of the reduced stiffness

matrix [Q]ikn of the k-th ply become:

Qi
11kn = (1− ηd1kn)E1 (3.4)

Qi
22kn = (1− ηd2kn)E2 (3.5)

Qi
12kn = (1− ηd1kn)(1− ηd2kn)ν12E2 (3.6)

Qi
66kn = (1− ηd3kn)G

′
12

[
1 +

(
G ′

12γ
i
12kn

S′

)ς]−(1+1/ς)

(3.7)

Qi
16kn =Qi

26kn = 0 (3.8)
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where the term ν12ν21 has been neglected compared to 1, and the damage

parameters can be defined as:

djkn =

⎧
⎨

⎩
0 before failure

1 after failure
(3.9)

In this way, a failed ply is assumed to exhibit ideally plastic deformation behaviour

on the macromechanical scale. This simplification obviates the need to model the

detailed failure processes on the micromechanical scale, and furthermore leads to

conservative strength predictions. For the rest, the numerical parameter η has

a default value of 0.99. This means that the degraded elastic properties are not

exactly 0, but rather effectively 0. Therefore, the stiffness matrix [A]in is non-

singular and always invertible during the analysis.

(b)Loading Conditions

Using the spherical coordinates, the in-plane loads with constant mutual ratios

can be parameterized by:

{N}in = ρ i
n{ψ}, {ψ}= {sinϑ cosϕ, sinϑ sinϕ, cosϑ}T (3.10)

where ϑ∈ [0,π] and ϕ∈ [0, 2π]. For a given orientation vector {ψ}, the magnitude

of the load vector can be increased from 0 in equal incremental steps as follows:

ρ i+1
n = ρ i

n +∆ρ (3.11)

Varying the angles ϑ and ϕ step by step within the specified ranges, the entire

three-dimensional failure space can be scanned with an intended resolution. Using

equation (3.1), the mid-surface strains at the point i+1 can be calculated with:

{ϵ}i+1
n = {ϵ}in +∆ρ[S]in{ψ} (3.12)

where the compliance matrix [S]in can be obtained by inverting the stiffness matrix

[A]in with Cramer’s rule. In case the mid-surface strains are prescribed, equations
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(3.10-3.12) can be replaced by:

{ϵ}in = ρ̂ i
n{ψ}, ρ̂ i+1

n = ρ̂ i
n +∆ρ̂ (3.13)

The user parameters ∆ρ and ∆ρ̂ are dependent on the magnitudes of the shear

deformations in the plies. If the deformation behaviour of the laminate is as yet

unknown, a sensitivity study is helpful in finding the best practical compromise

between the predictive accuracy and the computational effort.

(c)Laminate Failure Criterion and Termination Criteria

Consider the entire laminate as a system, the lamina failure criterion (2.18) and

(2.19) can be extended to a laminate failure criterion by taking the interaction of

the failure modes in different plies into account. Starting from an arbitrary failure

point n, the failure point n+1 can be calculated by using:

max
(
Υn,Υ

′
n

)
= 1, Υn =

3∑

j=1

N∑

k=1

ΛjkΦ
p
jkn

ζjk
, Υ ′

n =max
(
Λ′
jkΦ

p
jkn

)
(3.14)

or

max
(
Υ̂n, Υ̂

′
n

)
= 1, Υ̂n =

3∑

j=1

N∑

k=1

ΛjkΦ̂
p
jkn

ζjk
, Υ̂ ′

n =max
(
Λ′
jkΦ̂

p
jkn

)
(3.15)

where the superscript p denotes the last calculated discrete point. Equations (3.14)

and (3.15) are called the stress variant and the strain variant of the laminate

failure criterion, respectively. Physically the laminate failure criterion means that

the critical modes in all plies interact with each other, as a laminate is two or

more laminae bonded together to act as an integral structural element. There is no

mutual interaction between the non-critical modes, since the strain energy in one

mode can not flow into another mode because of the kinematical constraints of

the adjacent plies. As a simplification of reality, it is supposed that failure occurs

simultaneously in the symmetrical plies and in some anti-symmetrical plies, since

the stress components are all the same in the idealized sense. For this reason, these

plies can be treated as a single layer during the analysis; therefore, the factor ζjk
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is equal to the number of the synchronically failing plies. The determination of

the interaction parameters Λjk will be presented in §3 d (ii).

If a laminate exhibits a fibre dominated behaviour, the final failure is

characterized by the occurrence of the fibre failure:

max
(
d1kℓ

)
= 1, k ∈ [1, · · · ,N] (3.16)

where the subscript ℓ denotes the last calculated failure point. For a matrix

dominated laminate, there are two different situations: in the fibre dominated

regions, the final failure can be detected through equation (3.16); in the matrix

dominated regions, the final failure can be determined on the basis of the condition

of the stiffness matrix Ap
ℓ . When the accumulation of the matrix failures leads to

the disintegration of the laminate without breaking the fibres, it is typical that

the stiffness matrix becomes badly conditioned so that a small perturbation in

the applied loads produces an uncontrolled increase in the mid-surface strains:

κℓ ≫κ0 (3.17)

where the condition numbers κℓ and κ0 are based on the spectral norm, i.e.

κℓ =
∥∥[A]pℓ

∥∥ ·
∥∥inv[A]pℓ

∥∥ and κ0 =
∥∥[A]00

∥∥ ·
∥∥inv[A]00

∥∥. The threshold value of κℓ/κ0

that is dependent on the parameter η can be determined through numerical

experiments. For an angle-ply laminate, use can also be made of the so-called

shear failure cutoff, which is a more stringent criterion than relation (3.17):

max
(
d3kℓ

)
= 1, k ∈ [1, · · · ,N] (3.18)

For the ultimate load carrying capacity of the laminate, the analysis can be

terminated, when the final failure point has been reached.
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(d)Failure Prediction Algorithm

From the programming viewpoint, particularly the data storage, it seems

convenient to introduce some auxiliary matrices of the same format as follows:

[D]n =

⎡

⎢⎢⎢⎣

d11n · · · d1kn · · · d1Nn

d21n · · · d2kn · · · d2Nn

d31n · · · d3kn · · · d3Nn

⎤

⎥⎥⎥⎦
(3.19)

[F] =

⎡

⎢⎢⎢⎣

Λ11 · · · Λ1k · · · Λ1N

Λ21 · · · Λ2k · · · Λ2N

Λ31 · · · Λ3k · · · Λ3N

⎤

⎥⎥⎥⎦
(3.20)

[E]n =

⎡

⎢⎢⎢⎣

Φ p
11n · · · Φ p

1kn · · · Φ p
1Nn

Φ p
21n · · · Φ p

2kn · · · Φ p
2Nn

Φ p
31n · · · Φ p

3kn · · · Φ p
3Nn

⎤

⎥⎥⎥⎦
(3.21)

[Ê]n =

⎡

⎢⎢⎢⎣

Φ̂ p
11n · · · Φ̂ p

1kn · · · Φ̂ p
1Nn

Φ̂ p
21n · · · Φ̂ p

2kn · · · Φ̂ p
2Nn

Φ̂ p
31n · · · Φ̂ p

3kn · · · Φ̂ p
3Nn

⎤

⎥⎥⎥⎦
(3.22)

where [D]n is the damage state matrix and [F] is the mode interaction matrix that

is n independent. Among the twinned energy ratio matrices, [E]n is based on the

stress variant (3.14) and [Ê]n is based on the strain variant (3.15). In [E]n and

[Ê]n, the values of the point i are overwritten by the values of the point i+1.

In broad outlines, the current progressive damage analysis is based on a

predictor-corrector scheme:

Step 1. The failure surface of the first order is simulated by fully neglecting the

failure mode interaction. Suppose that the failure point n is known, the load

level is further increased to such an extent that the stress variant of the

laminate failure criterion (3.14) has just been satisfied:

max
(
[E]n

)
≥ 1 (3.23)
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The variable ρpn+1 can be solved by using the bisection method, where the

last two calculated points form the lower and upper bound. Compared with

the Newton-Raphson method, the bisection method uses only function values

(no derivative values) and is especially suitable for noisy functions, although

its convergence rate is relatively low. Locating the maximum components

in the energy ratio matrix [E]n, it can be determined which failure mode

has occurred and which plies have failed at the failure point n+1. For the

failure point n+2, the damage state matrix [D]n is updated to [D]n+1. The

calculations are repeated until one of the termination criteria (3.16), (3.17) or

(3.18)is satisfied. When the entire failure surface is prescanned, the predictor

step is finished, and one proceeds to the next step.

Step 2. The failure surface obtained is upgraded to the second order by taking

the failure mode interaction into account. In doing so, a survey is made of the

critical failure modes for all possible loading conditions. In the [F] matrix,

the mode interaction parameters Λjk that correspond to the critical modes

become 1, while the other components correspond to the non-critical modes

remain 0. If the [F] matrix shows that the laminate is fibre dominated, the

interactive failure surface is calculated in an incremental way by proceeding

with the last non-critical points from the predictor step:

3∑

j=1

N∑

k=1

ΛjkΦ
p
jkn

ζjk
= 1 (3.24)

For equation (3.24), the aforementioned bisection solver remains available.

If the laminate is matrix dominated, the interactive failure surface can be

calculated from the beginning on the basis of the strain variant of the

laminate failure criterion (3.15). After the final scan has been performed

systematically on the failure surface, the corrector step as well as the whole

progressive damage analysis are finished.
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Regarding the model implementation and virtual material testing, the

commercial mathematics software package MatlabTM can be employed, which

integrates programming, computation and visualization in a user-friendly

environment. So far, the development of the progressive damage model for in-

plane failures of multidirectional laminates has been completed, where the energy

based failure criterion with allowance for proper failure mode interactions and

the precise failure mode scanning technique make this model unique among many

other models that can be found in the open literature.

4. Experimental Verification

The accuracy of the progressive damage model is verified on the basis of the

WWFE benchmark data, which were obtained by subjecting thin-walled tubes to

combinations of internal or external pressure, axial load and torsion. Seven test

cases are analysed, which cover the following three types of laminates:

• E-glass/MY750 [±55◦]S laminate

• E-glass/LY556 [90◦/±30◦]S laminate

• AS4/3501-6 [0◦/±45◦/90◦]S laminate

The theoretical and experimental results that comprise a number of stress strain

diagrams and biaxial failure envelopes are compared with each other in a critical

manner, where the emphasis is placed on the physical interpretations of the

results rather than the mathematical correlations between the results. For the

mechanical properties of the unidirectional laminae, the reader is referred to

Hinton et al. (2004).

(a)E-glass/MY750 Angle-ply Laminate

In figure 5, it can be seen that the theoretical structural response is in good

agreement with the experimental data points. The stress strain curves are highly
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non-linear, as the plies undergo significant shear deformations due to the uniaxial

loading. When the transverse and shear stiffnesses of the plies are reduced to

almost 0 (η≈ 1), the laminate becomes unstable at the shear failure point, where

the stiffness matrix becomes badly conditioned. In this way, an idealized lower

bound is found for the final failure. If the elastic property degradation is discarded

(η= 0), the three failure points that occur in succession are of the transverse,

shear and longitudinal failure mode, respectively. This upper bound of the final

failure occurs, when the plies with matrix cracks coincidentally have some residual

stiffness so that the laminate remains capable of carrying additional loads until

the level of fibre failure is reached. From a practical standpoint, the calculations

which follow are performed with η≈ 1.

On the strain plane the biaxial failure envelope of the laminate is constructed

by means of the maximum strain criterion, as shown in figure 6. From the failure

strain contour, it can be verified that fibre rotation occurs only to a minor extent.

The equation that relates the realigned angle θ′ of a ply to the original angle

θ reads θ′ = arctan[tan θ(1 + ϵy)/(1 + ϵx)] (see Hinton et al. (2004)). When an

angle-ply laminate is subjected to large deformations, the linearization of the

transverse deformation behaviour of the plies leads to an over-estimation of the

0 2 4 6 8 10
0

100

200

300

400

500

600

700

 

 

σ
y

[M
P
a]

ϵy [%]

η = 0

η ≈ 1

σx:σy=0:1

- - & — : Theoretical ◦ : Experimental

Figure 5. Stress strain diagrams of [±55◦]S laminate



26

laminate in-plane stiffnesses. To obtain a conservative last-ply failure prediction,

the transverse modulus E2 of the plies is reduced to 0 as is done in the netting

analysis (see MIL-HDBK-17 2002). The shear modulus G12 is retained, as the

shear deformations are in the ascendant. The first-ply failures are evaluated

through a separate analysis with input of the unmodified transverse ply stiffness,

as it can be supposed that the ply deformations are relatively small. From the

failure envelope on the stress plane, it can be seen that the theoretical calculations

are consistent with the bulk of the experimental data (see figure 6). In view of the

basic equations used, it is logical that the current model provides the same first-ply

failure results as the non-linear model of Bogetti et al. (2004), and nearly the same

first order last-ply failure results as the graphical method of Hart-Smith (1998).

The maximum strength of the laminate occurs in the direction σx:σy=1:2, where

the applied loads are efficiently transferred into the fibres. The remaining regions

are dominated by the matrix shear failures. The second order failure envelope

shows further that the interaction between the longitudinal and shear failure

modes occurs primarily in the acute angles. The experimental data points outside
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the elongated failure envelope can be simulated by giving the damaged plies a

certain residual transverse and shear stiffness (e.g. η= 0.5).

(b)E-glass/LY556 Multidirectional Laminate

Due to the large stiffness mismatch, the [90◦/±30◦]S laminate is vulnerable

to delaminations along the 90◦/30◦ and 30◦/90◦ interfaces. For the final failure

envelopes, the laminate is thought of as the delaminated [±30◦]S sublaminate

sandwiched between two thinner [90◦] sublaminates, where the strains in the

different plies remain equal to each other. Based on the experience in the

previous [±55◦]S laminate, the transverse modulus E2 of the ±30◦ plies is reduced

to 0. It turns out that the theoretical predictions agree reasonably well with

the experimental data (see figure 7). The first order σx-σy graph shows that

the ultimate strength of the laminate is controlled by the longitudinal failure

modes in the 90◦ plies and the ±30◦ plies that fail contemporaneously. The

strong asymmetry in the second order failure envelope is attributed to the large

differences in the stiffness and strength properties of the [90◦] sublaminates and

the [±30◦]S sublaminate. In the compression-compression quadrant, it is likely
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that a premature failure mechanism such as buckling has occurred during the

tests, i.e. these data points can be identified as outliers. Under the combined loads

Nx and Nxy, the 30◦ and -30◦ plies are not equally loaded in their longitudinal

directions; therefore, the plies do not fail contemporaneously. As indicated in the

first order σx-τxy graph, the critical failure modes are the longitudinal modes in

the -30◦, 30◦ and 90◦ plies, respectively. Due to the interaction between the failure

modes in the three plies, the second order σx-τxy curve shows a significant strength

decrease compared with the first order curve. In the 30◦ and 90◦ segments, the

two curves depart from each other without common tangent points. Compared

with the previous test case of the [90◦/±30◦]S laminate, the current values of

the uniaxial tensile and compressive strength decrease to some extent, as the

unfavourable influence of a small disturbing shear load on the failure behaviour

of the ±30◦ pairs is taken into account.

(c)AS4/3501-6 Quasi-isotropic Laminate

In figure 8, the theoretical stress strain diagrams for the stress ratios

σx:σy=1:20 and σx:σy=1:2 are plotted together with the experimental data,

showing that the predictions match closely the measurements. As the shear
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dominated deformation mechanism that can be encountered in the [±55◦]S or

[90◦/±30◦]S laminate plays no part in the [0◦/±45◦/90◦]S laminate, the reduction

of the transverse modulus E2 of the ±45◦ plies to 0 is superfluous. The stress

strain curves are practically piecewise linear, as the non-linear effect in the shear

deformations is insignificant under these loading conditions. At the failure points,

the laminate stiffness decreases slightly, as the structural degradation due to the

matrix cracks is almost nullified by the fibres in the perpendicular direction. In

table 1, the failure stresses are summarized to enable a quantitative comparison

between the theoretical and experimental results. It appears that the resolution of

the experimental data points is too low to determine the initial transverse matrix

failures. The good agreement between the theoretical and experimental non-

catastrophic failure points implies that the residual curing stresses have limited

effect on the failure behaviour of the laminate. This means that the largest part

of the strain energy, which is associated with the thermal stresses, is not released

during the fracture processes. In these two test cases, it can be seen that the

laminate ultimate strength has been predicted with an accuracy above 97%.

In figure 9, the theoretical biaxial failure envelopes are overlaid on the

experimental data for a direction comparison. For the quasi-isotropic laminate,

the first order failure envelope takes a diamond shaped form, where the four sides

are slightly curved because of the non-linear shear deformations in the plies. The

longitudinal failure modes in the 0◦ and 90◦ plies, either tensile or compressive,

Table 1. Failure points in [0◦/±45◦/90◦]S laminate

Stress ratio No. Failure mode Theoretical Experimental
1 Transverse, 0◦ 225.0 MPa —

σx:σy≈0:1 2 Transverse, ±45◦ 437.5 MPa 400 MPa
3 Longitudinal, 90◦ 700.0 MPa 718 MPa
1 Transverse, 0◦ 242.5 MPa —

σx:σy=1:2 2 Transverse, ±45◦ 320.0 MPa —
3 Transverse, 90◦ 472.5 MPa 450 MPa
4 Longitudinal, 90◦ 825.0 MPa 847 MPa
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can be identified as the critical failure modes of the laminate. The second order

failure envelope changes to an inscribed closed convex curve that is shaped as

a Cartesian oval, as the longitudinal failure mode in the 0◦ plies interacts with

the longitudinal failure mode in the 90◦ plies. At the tangent points of the two

theoretical curves, the longitudinal stresses are equal to 0 either in the 0◦ plies

or in the 90◦ plies, there is therefore no interaction between the failure modes. In

spite of the large scattering in the experimental data, the predictions are found

to be in good agreement with the measurements. In the compression-compression

quadrant, there is evidence that the specimens failed by buckling during the tests.

This explains why the theoretical curves deviate from the experimental data points

in this region. In principle, the 0◦ and 90◦ plies fail simultaneously, if there holds

exactly Nx =Ny. This implies that the failure mode interaction does not occur

under the equal biaxial loading condition. However, one has to be conscious of

the fact that these first order solutions are highly sensitive to the fluctuations in

the applied loads. Generally speaking, the second order method provides better

and more reliable predictions of the laminate ultimate strength.
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5. Conclusions and recommendations

In the present study, an attempt has been made to propose a rigorous model

for the in-plane strength of laminated composites. It turns out that the lamina

and laminate failure criteria can be founded on the maximum strain energy in

the fundamental failure modes, where the critical failure modes are interactive

and the non-critical failure modes are non-interactive. This finding enables the

strength characteristics of composite laminates to be evaluated through ab initio

calculations, where only the standard material parameters are used as input for the

analysis. Through an extensive experimental verification, the progressive damage

model is demonstrated to provide realistic predictions of the failure behaviour of

different laminates under different loading conditions. It can be concluded that

the simple model retains the essential features of the actual physical process. It

should be pointed out that the generalization of the Griffith energy criterion is

not intended to add an extra member to the large family of failure criteria, but

to accomplish a unified criterion to supersede the established ones.

The following areas are recommended for future research:

1. For laminates under combined in-plane and out-of-plane loads, an

appropriate delamination prediction algorithm has to be integrated into the

progressive damage model.

2. Incorporated into a finite element program, possibly combined with an

automated adaptive remeshing algorithm, the progressive damage model is

expected to improve the predictability of the failure behaviour of complex

composite structures.

3. In conjunction with the Monte Carlo method, the progressive damage model

can be used to investigate the statistical variation in the static strength of

laminates.
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4. If the design strain levels of composite structures are further increased,

a validated analytical fatigue life prediction methodology needs to be

established; it is believed that the energy based methods remain promising

for the modelling of various fatigue phenomena.

5. On a more practical level, a possible outcome of the analytical modelling

efforts is the ability to develop an accurate condition monitoring system of

composite structures by using a network of sensors, e.g. piezoelectric sensors.

6. Assisted by the theoretical models, various scaling techniques can be

developed, enabling the failure modes of large composite structures to be

simulated correctly with smaller specimens in a laboratory.

7. In a broader long-term perspective, the understanding of rapid crack

propagation in composite materials and other engineering materials is clearly

a grand challenge, where research at the boundaries of fracture/damage

mechanics, dynamics and other related areas may lead to the unification

of the two new sciences inaugurated by Galilei.

The list above is by no means complete, all interesting topics in the direction

towards the mathematization of the field of mechanics of composite materials

merit additional pursuit. The trend to reconcile fracture mechanics, damage

mechanics, fatigue theory, buckling theory and many other related fields with each

other and to subsume them within a general strength theory should be encouraged.

Composite materials continue to be developed and improved to provide higher

performance and there is no end in sight. In diverse industries ranging from

the medical devices, sporting goods, wind energy, construction, shipbuilding to

automotive and aerospace, it is beyond all doubt that human ingenuity will find

more and more areas where composite materials can be beneficially utilized.
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